

Mastering Sublime Text

A concise guide to help you master the Sublime
Text skills, from basic setup through the art of theme
customization to the proficiency of plugin development

Dan Peleg

BIRMINGHAM - MUMBAI

Mastering Sublime Text

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-842-9

www.packtpub.com

Cover Image by Gagandeep Sharma (er.gagansharma@gmail.com)

Credits

Author
Dan Peleg

Reviewers
James Brooks

Dougal Matthews

Matt Morrison

Jeffrey Sadeli

Acquisition Editors
Kevin Colaco

Llewellyn Rozario

Lead Technical Editor
Larissa Pinto

Technical Editors
Gauri Dasgupta

Monica John

Proofreader
Dan McMahon

Copy Editors
Roshni Banerjee

Tanvi Gaitonde

Mradula Hegde

Dipti Kapadia

Insiya Morbiwala

Deepa Nambiar

Alfida Paiva

Shambhavi Pai

Project Coordinator
Jomin Varghese

Indexer
Hemangini Bari

Production Coordinator
Nilesh Bambardekar

Cover Work
Nilesh Bambardekar

About the Author

Dan Peleg is an accomplished software engineer. As a former developer in the
Israeli Intelligence Force, he holds extensive experience in both defense and robotic
industries, and has previously lectured at DefCon conventions. Dan has developed
unique algorithms for robotic platforms, specializes in a variety of software platforms,
and currently works as the CTO for an American startup company.

I want to thank every plugin developer whose plugin is mentioned
in this book. I would also like to thank Stuart Herbert for the content
on PHPUnit, and Tom Lahat and Yali Saar for their support.

About the Reviewers

James Brooks has been programming for over a decade, starting out at the age of
seven. He's worked his way through multiple languages from LOGO to C++ and
back again. Having built a custom operating system and several half-baked games,
he's now settled into web development. He is currently working at Blue Bay Travel.

Dougal Matthews is a Python developer based in Scotland. He works for Red Hat,
where he helps out with OpenStack. Dougal is also involved in running a number of
community events, groups, and conferences.

Matt Morrison, after trying every development environment available, discovered
Sublime Text, and never looked back. He immediately fell in love with its emphasis
on text-based configuration files, accessibility of Python API, and vibrant ecosystem
of plugins and extensions contributed by the community. Being a tinkerer and a
teacher at heart, Matt set about learning as much as he could about the software
and sharing his knowledge and passion with others on StackOverflow, the Sublime
forums, and elsewhere. He has authored two extensions on Package Control:
the Neon Color Scheme, which aims to make as many languages look as good as
possible; and Python Improved, a better Python language definition that fixes bugs
in the original as well as introducing new features, including Django integration,
IPython support in SublimeREPL, Python 3 function annotations, and more. He is
also an active contributor of bug fixes and feature improvements for a number of
other open source projects.

Despite his broad interests in all things computer-related, software development
is only a (rather time-consuming) hobby. Matt received his Master's degree in
Molecular Medicine from Penn State in 2005, and is employed as a scientist in his
day job, working on cell and molecular biology. He is currently working in Biotech
in the greater Boston area, and absolutely loves what he does. Matt has a blog
about Sublime Text at http://mattdmo.com, and invites one and all to stop by and
participate. You can find him on GitHub, StackOverflow, and Twitter as MattDMo.

I would like to thank my wife Amy and my two little boys for their
support and understanding.

Jeffrey Sadeli graduated from Rose-Hulman Institute of Technology in 2008 with
a bachelor's degree in Computer Science. As a technology and design enthusiast, his
passion lies in applying elegant technical solutions and beautiful designs to solve
problems. Having worked for several years as a full-time software development
engineer at Beckman Coulter developing automation applications, he is currently
pursuing a master's degree in Business at Doshisha University.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Installing Sublime Text 5

Preparing for Sublime Text Installation 5
Installing Sublime Text on OS X 6

Working with Sublime CLI 6
Installing Sublime Text on Windows
32/64 bit 7

Adding Sublime to the environment 8
Installing Sublime Text on Linux 9

Installing Sublime Text on Ubuntu 32/64 bit 9
Setting Sublime Text as the default editor 10
Installing Sublime Text on other Linux distributions 10

Adding a desktop file 11
Getting to know the Data and Packages directories 12

The Data directory 12
The Packages directory 12

Delving into packages, plugins, snippets,
and macros 13

Running Sublime for the first time 14
Simple navigation 15
Sublime's command palette 16
The Python console 17

Installing the Package Control ASAP 18
Summary 19

Chapter 2: Code Editing 21
Discovering Search and Replace 21

Regular Expressions 22
Search and Replace – a single file 22

Table of Contents

[ii]

The incremental search 24
Search and Replace – multiple files 25

Mastering Column and Multiple Selection 25
Column Selection 26

Navigating through everything 26
Go To Anything 26
Symbol search 27
Projects 27

Folders 28
Settings 28
Build systems 29
Navigating between projects 29

Using the must-have SublimeCodeIntel 29
Installing SublimeCodeIntel 29
Using SublimeCodeIntel 30
Configuring SublimeCodeIntel 30

Linting with SublimeLinter 31
Installing SublimeLinter 31
Using SublimeLinter 31
Configuring SublimeLinter 32

The must-know shortcuts map 32
General 32
Tabs 33
Bookmarks 33
Editing 33

Summary 34
Chapter 3: Snippets, Macros, and Key Bindings 35

Getting to know a snippet 35
Understanding your first snippet 37

How do snippets work? 37
File format and syntax 37
Knowing about snippets' features 38

Creating our first snippet 39
Using Package Control snippets 41
Recording, editing, and using macros 41

Recording a macro 41
Playing a macro 42
Saving and editing 42
Binding a saved macro 42

New key bindings 42
Summary 43

Table of Contents

[iii]

Chapter 4: Customization and Theme Development 45
Overriding and maintaining key bindings 45

Platform-specific key bindings 46
Key map file structure 46

Bindable keys 47
Advanced key bindings 47

Keeping our key bindings organized 48
Understanding Sublime's base settings 49

The types of settings' files 49
Customization walkthrough 50

Adding packages 50
Tabs and spaces 50

Beautifying Sublime with colors and themes 51
Visual settings 51
Sublime themes 52
Color schemes 52

Mastering Split Windows 53
Summary 55

Chapter 5: Unravelling Vintage Mode 57
Understanding Vintage Mode 57

Discovering vi 57
Setting up Vintage Mode 58
Experiencing Vintage Mode features 59

Vintage editing modes 59
Vintage Mode commands 59

Commands for changing modes 60
Movement commands 60
Editing commands 61

Knowing about Vintageous 61
Summary 62

Chapter 6: Testing Using Sublime 63
Introduction to testing in Sublime Text 63
Testing in PHP development 64

Knowing about PHPUnit 64
Using PHPUnit plugin for Sublime 64

Helpful PHPUnit snippets 66
Testing in Python development 66

Using unittest for Sublime 67
Testing in Ruby development 69

Using RubyTest for Sublime 70
Supporting bundler 71

Summary 71

Table of Contents

[iv]

Chapter 7: Debugging Using Sublime 73
Introduction to debugging in Sublime Text 73
Debugging PHP with Xdebug 74

Using Xdebug for Sublime 74
Debugging JavaScript with Web Inspector 76

Installing Sublime Web Inspector 76
Using Sublime Web Inspector (SWI) 77

Debugging C/C++ with GDB 79
Using SublimeGDB 80

Summary 82
Chapter 8: Developing Your Own Plugin 83

Warming up before starting a plugin 83
Starting a plugin 84
Developing the plugin 87
Publishing our plugin 89
Summary 90

Index 91

Preface
Mastering Sublime Text will put you at the frontier of modern software development.
It will teach you how to leverage Sublime for anything from mobile games to missile
protection. Above all, this book will help you harness the power of other Sublime
users and always stay on top in this ever-changing world. The book takes you from
the early stages of navigating through the platform and moves on by teaching you
how to fully customize your installation, test, debug, and eventually create and share
your own plugins to help take this community forward.

What this book covers
Chapter 1, Installing Sublime Text, helps you get started on different platforms and
with basic settings.

Chapter 2, Code Editing, covers navigation techniques, shortcuts, and must-have plugins.

Chapter 3, Snippets, Macros, and Key Bindings, covers snippets usage, macros, and key
binding management.

Chapter 4, Customization and Theme Development, explains how to customize your
workspace, from colors to split screens.

Chapter 5, Unravelling Vintage Mode, explains what Vintage Mode is, how to set it up,
and how to take advantage of it.

Chapter 6, Testing Using Sublime, explains how to test your code in several different
languages.

Chapter 7, Debugging Using Sublime, explains how to use Sublime Text for debugging
your code in different languages.

Chapter 8, Developing Your Own Plugin, will guide you through developing your own
Sublime Text plugins and publishing them to the community.

Preface

[2]

What you need for this book
You will require an Internet connection and Git installed on your system; the rest
will be specified in each chapter.

Who this book is for
This book is for developers in any type of programming language who want to start
using Sublime Text or perfect their existing skills, regardless of whether they are
evaluating it for free or using a licensed version. No knowledge of Sublime Text or
any other code editor or IDE is required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "This will reload your .bash_profile
with the newly added directory."

A block of code is set as follows:

{
 "font_size": 14,
 "always_show_minimap_viewport": true,
 "ignored_packages":
 [
 "Vintage"
]
}

Any command-line input or output is written as follows:

sudo ln -s /opt/sublime_text_3/sublime_text /usr/bin/subl

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"I recommend adding Sublime to the explorer context by ticking Add to explorer
context menu."

Preface

[3]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[4]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Installing Sublime Text
This chapter will guide us through installing Sublime Text on all the supported
platforms. We will also cover advanced installation and basic navigation around
Sublime. This chapter is aimed at new users, but we recommend you flip through
it even if you are already familiar with Sublime Text.

In this chapter, we will cover the following topics:

• Installing Sublime Text on OS X
• Installing Sublime Text on Windows 32/64 bit
• Installing Sublime Text on Linux 32/64 bit
• Getting to know the Data and Packages directories
• Running Sublime for the first time
• Installing the Package Control ASAP

Preparing for Sublime Text Installation
This chapter serves as a quick installation reference for users who are new to Sublime
Text, and covers all supported operating systems. We will also cover advanced
installation techniques such as adding Sublime to our Command Line Interface
(CLI) and to Ubuntu's action bar. Please refer to the appropriate section depending
on your operating system.

At the time of writing this book, Sublime Text 3 was in Beta.
Follow #sublimehq on Twitter for version updates.

Installing Sublime Text

[6]

Installing Sublime Text on OS X
This section will explain how to install Sublime Text on OS X 10.7 or later, as required.

First go to http://www.sublimetext.com/3 and click on the download link for OS
X. A file called Sublime Text Build #.dmg will be downloaded. Open this file and
we will see the following window:

Simply drag the Sublime Text icon into the Applications folder and wait for the
application to be copied.

We have just installed Sublime on our OS X! Is that all? No, we can also get the
bleeding edge version from here: http://www.sublimetext.com/3dev. Bleeding
edge versions are available for registered users only and are more susceptible to bugs.

Working with Sublime CLI
Sublime Text ships with a CLI called subl, but this CLI isn't added to our environment
by default. We want to be able to use it straight from our terminal, so we need to add a
symbolic link called subl to the subl executable.

ln –s /Applications/Sublime\ Text.app/Contents/SharedSupport/bin/subl
/usr/local/bin/subl

To see if it worked, type subl filename in the terminal where filename is the file
you want to edit. Did it work? If not, then we need to add our folder that contains
the new symlink to the environment. Run the following command:

open ~/.bash_profile

The first line of the file should start with export PATH=. It contains all the directories
that will be looked into for executable binaries when we type a command in the
terminal. Since we created a symlink to subl inside the /usr/local/bin directory,
we will add it to the path by adding it to the directories:

export PATH=/usr/local/bin[…]

Chapter 1

[7]

[…] represents other directories that would be listed on the same line,
separated by a colon.

Now, run the following code before continuing:

source ~/.bash_profile

This will reload your .bash_profile with the newly added directory.

Sublime CLI should work now; try one of the following commands:

subl filename ("filename" is the filename to edit)

subl foldername ("foldername" is the folder to open)

subl . (to open the current directory)

That's it! We have Sublime Text with CLI running on our OS X!

Installing Sublime Text on Windows
32/64 bit
This section will explain how to install Sublime Text on Windows 7/8, 32/64 bit. It is
important to get the right version because the 64-bit version won't run on a 32-bit PC.

Go to http://www.sublimetext.com/3 and download the relevant file for 32-bit or
64-bit. A file called Sublime Text Build # Setup.exe will be downloaded. Open the
file and you will be guided through the setup. Click on Next and choose setup location.
Next, add Sublime to the explorer context by American English: should use "checking"
Add to explorer context menu as shown in the following screenshot:

Then, finish the installation. We have just installed Sublime! Are we done? Not yet.

Installing Sublime Text

[8]

Adding Sublime to the environment
We want to add Sublime to our environment so we can use it straight from the
command line. Open Run by pressing WinKey + R and enter sysdm.cpl, as shown
in the following screenshot:

Click on OK, the System Properties window should open. Now, go to the Advanced
tab and click on the Environment Variables… button at the bottom-right corner.
Environment variables should open, look for the Path variable in System variables,
double-click it to open the Edit System Variable window, and add your Sublime
installation path to the end of the Variable value field prefixed with a semicolon,
as shown in the following screenshot:

As we can see, my installation path is D:\Program Files\Sublime Text 3. Click
on OK. Now we can run Sublime from the command line by typing sublime_text
filename where filename is the file to edit. But the sublime_text command is too
long to type every time we want to open a file with Sublime. Go to your installation
directory and create a new file named subl.bat. Paste the following code into the file:

Chapter 1

[9]

@echo off
start sublime_text.exe %*

The first line turns off the echo of the .bat file. This means that we won't see any
output when we run the file. The second line will start the sublime_text executable
with the given parameters.

Save the .bat file and open a new command line. We can now use the following
commands in our command line:

subl filename ("filename" is the filename to edit)

subl foldername ("foldername" is the folder to open)

subl . (to open the current directory)

That's it; we have Sublime on our Windows PC!

Installing Sublime Text on Linux
This section will explain how to install Sublime Text on different Linux distributions.

Installing Sublime Text on Ubuntu 32/64 bit
This section will explain how to install Sublime Text on Ubuntu 32/64 bit.

There are a few different options for installing Sublime Text on your Ubuntu; we will
use the Personal Package Archive (PPA) one. For this, we need to add the PPA that
contains the Sublime Package. PPA is a software repository that contains packages
that can be installed by Ubuntu's Launchpad.

To add the repository, run the following from the terminal:

sudo add-apt-repository ppa:webupd8team/sublime-text-3

sudo apt-get update

sudo apt-get install sublime-text-installer

To install Sublime Text 3 on our Ubuntu, we can now use the following commands:

subl filename ("filename" is the filename to edit)

subl foldername ("foldername" is the folder to open)

subl . (to open the current directory)

Installing Sublime Text

[10]

We can also see the Sublime icon on Ubuntu's action bar, which is typically on the
left-hand side, as shown in the following screenshot:

Setting Sublime Text as the default editor
After we have installed Sublime, we want to set it as the default editor for
everything! To do that, simply open the defaults.list file of Ubuntu by using
the following command:

sudo subl /usr/share/applications/defaults.list

And replace all occurrences of gedit.desktop with sublime-text.desktop.

Installing Sublime Text on other Linux
distributions
Installing Sublime on a Linux other than Ubuntu takes a little longer, but we will
do it as fast as possible! We start by going to http://www.sublimetext.com/3
and downloading the desired tarball for 32-bit or 64-bit.

Notice that we do not download the Ubuntu one but the tarball.

Chapter 1

[11]

After downloading, let's open our terminal and navigate to the Downloads folder:

cd ~/Downloads

The downloaded file is compressed using TAR. We will have to NTAR it first by
running the following command:

tar xf sublime_text_3_build_3047_x64.tar.bz2

Your filename might be different depending on your build
and architecture.

Move the extracted folder to /op:

sudo mv sublime_text_3 /opt/

We want to make a symbolic link so that we can run Sublime straight from
the terminal:

sudo ln -s /opt/sublime_text_3/sublime_text /usr/bin/subl

Now, we have Sublime installed and can use the following commands to open the
directory:

subl filename ("filename" is the filename to edit)

subl foldername ("foldername" is the folder to open)

subl . (to open the current directory)

Adding a desktop file
Some distributions such as OpenSUSE, Ubuntu, or GNOME, use .desktop files.
These files are for the desktop/action bar launch icons.

Let's add Sublime's .desktop file to the environment. It's good for us that Sublime
comes with the file already and we don't need to write it. Just copy the file to the
right location using the following command:

sudo cp /opt/sublime_text/sublime_text.desktop /usr/share/applications/

Your distribution may not provide /usr/share/applications, in which case you'll
have to copy the file to ~/.local/share/applications.

Installing Sublime Text

[12]

Getting to know the Data and Packages
directories
After the successful installation of Sublime on our system, we can begin to understand
what was actually being installed and how can we take advantage of it.

In this section I will use Windows shortcuts. So when I use Ctrl+?, it will be the same
as using Command+? on a Mac.

The Data directory
From the official Sublime docs:

Nearly all of the interesting files for users live under the Data directory.

The location of the Data directory is platform-dependent:

• Windows: %APPDATA%\Sublime Text 3
• OS X: ~/Library/Application Support/Sublime Text 3
• Linux: ~/.config/sublime-text-3

We should see at least three directories inside the Data directory:

• Installed Packages: This contains a copy of every sublime-package
installed. It's used to restore packages.

• Local: This stores all the information about our current and previous
session. This is used to restore Sublime to the stage we were in, when we
last quit Sublime.

• Packages: This contains all package folders that Sublime will load.

The Packages directory
The following is written on the official Sublime docs:

"This is a key directory"

This directory contains all the resources for supported programming, markup
languages, and custom plugins. We will refer to this folder as Packages.

Chapter 1

[13]

We can also access the Packages directory from Sublime's main
menu by navigating to Preferences | Browse Packages… on
Windows or Linux, and by navigating to Sublime Text | Preferences
| Browse Packages… on OS X.

The User package
This package is present at Packages/User and contains all custom plugins, snippets,
macros, and user preferences. Let's make our first tweak!

Open Packages/User/Preferences.sublime-settings. We should see the
following code:

{
 "font_size": 14,
 "ignored_packages":
 [
 "Vintage"
]
}

Try changing the font size and click on Save or Ctrl + S. Our font size has changed!
We can also achieve this effect by pressing Ctrl + - to decrease the font size and Ctrl +
+ to increase the font size. In Linux or Windows, this can also be achieved by holding
the Ctrl key while zooming in and out.

Delving into packages, plugins, snippets,
and macros
Almost every corner and pixel of Sublime Text can be tweaked, extended, or
customized. All this customization is based on JSON, XML, Python, and Sublime
files. A package is basically a folder that contains all resources that belong together,
and it gives Sublime a new functionality or customization. This is all we need to
know for now.

Installing Sublime Text

[14]

Running Sublime for the first time
Open a random code project. We can do it by typing the following command:

subl projectfolder

In the preceding command, projectfolder is the path of the folder we wish to
open. We can also open an empty Sublime window and drag the desired folder into
it. The Sublime window is shown in the following screenshot:

In the preceding screenshot, on the left-hand side we can see the File Navigator side
bar that contains all the open folders in a hierarchy. At the top, we can see the tabs
that are currently open, with the selected one highlighted. On the right-hand side,
we can see the Mini Map. In Sublime 3, the Mini Map viewport that indicates the
current position in the file has been removed. Let's bring it back!

Press Ctrl + O and open the user preferences, or go to Preferences | Settings-User.
As you probably noticed, the file is written in the JSON format.

If you are not familiar with JSON, please go to http://
en.wikipedia.org/wiki/JSON#Data_types.2C_syntax_and_
example or http://JSON.org.

Chapter 1

[15]

We need to add the following key value to the file:

"always_show_minimap_viewport": true,

Press Ctrl + S to save. Our file should now look like the following:

{
 "font_size": 14,
 "always_show_minimap_viewport": true,
 "ignored_packages":
 [
 "Vintage"
]
}

Because Sublime parses things as soon as they get saved, we should be able to see
the Mini Map viewport immediately!

Simple navigation
Let's go back to our file using Goto Anything (shown in the following screenshot),
one of Sublime's best features, by pressing Ctrl + P:

Installing Sublime Text

[16]

We can even highlight the Mini Map by setting "draw_minimap_
border": true in our settings file.

As you can see, the Go To window opens after indexing all files that are on the side
bar. We can navigate by typing the file name, acronyms, extension, or prefix.

This search feature is called Fuzzy Text Search or Approximate string matching.

Press Esc to close the Go To window. We are going to use this a lot while developing
a large project, so we should feel comfortable with it before moving on.

Try closing the current tab by pressing Ctrl + W. Now if no tab is left open, you can
open a new one by pressing Ctrl + N, or even open a new window by pressing Ctrl +
Shift + N.

If you press Ctrl + W on Windows or Linux when no tabs are open,
the window itself will close.

To jump between open tabs in Windows or Linux, simply press Alt + # (where # is
the sequential number of the tab from left to right), or press Command + # for OS X.
In Windows or Linux, we can also go to the Next or Previous tab by pressing Ctrl +
PageUp and Ctrl + PageDown respectively. The same can be done by pressing Option
+ Command + → or Option + Command + ← in OS X. Another nice navigation feature
is the tab stack. To go forward in the stack, press Ctrl + Tab, and press Ctrl + Shift +
Tab to go backwards. On OS X also, it's Control and not Command this time.

There are more nice Go To features such as Go To line by pressing Ctrl + G, and
Go To matching bracket with Ctrl + M.

Sublime's command palette
One of the most important features is the command palette where all the custom
features or plugins can be accessed. Open the command palette by pressing Ctrl +
Shift + P, or Command + Shift + P on OS X. We should see the following screenshot:

Chapter 1

[17]

This window is using the same search algorithm that the Go To Anything window
uses. We can see that I typed CA and I get the Close All command. Pressing Enter
will close all open tabs. Don't worry, it will notify if a file we are trying to close has
not been saved. We can see any keyboard shortcuts to the right of each command.

The Python console
Sublime comes with an embedded Python interpreter. It's a useful tool to inspect the
editor's settings, quickly test API calls while developing plugins, or just do simple
math. To open the Python console, press Ctrl+` or go to View | Show Console from
the main menu. The following screenshot shows a Python console:

Installing Sublime Text

[18]

It's important to know that Sublime comes with its own Python interpreter on
Windows and Linux, and it's separate from your system's Python installation.
Modifying your system's version of python, such as replacing it with the MacPorts
version, can cause problems with Sublime Text.

Installing the Package Control ASAP
We learned that Sublime has Packages that help us customize our Sublime experience.
But how can we find the packages that suit our needs? And how do we install different
packages? That's why we have Package Control https://sublime.wbond.net/ The
Package Control is a non-official open source plugin that lets us navigate through
thousands of mainly open source packages ready to install! There are some closed
source (commercial) plugins available, such as Sublimemerge and SFTP.

Let's start by installing the Package Control plugin into Sublime. We do it by
opening the console Ctrl + ` and copying the following code:

import urllib.request,os; pf = 'Package Control.sublime-package';
ipp = sublime.installed_packages_path(); urllib.request.install_
opener(urllib.request.build_opener(urllib.request.ProxyHandler())
); open(os.path.join(ipp, pf), 'wb').write(urllib.request.urlopen(
'http://sublime.wbond.net/' + pf.replace(' ','%20')).read())

If you are having trouble installing the Package Control ASAP using
the preceding code, please visit http://sublime.wbond.net/
installation.

This code will download the Package Control package and place it inside the
Installed Packages directory. After it has finished installing, open the command
palette and navigate to Package Control | Install Package. Then press Enter and you
will notice Loading repositories [=] in the status bar.

Chapter 1

[19]

After it finishes loading, a new window will open with all the packages available for
instant installation!

What we see in this screenshot is the package title, description, version, and the
repository link. To install, simply press Enter and the new installed features will
appear in the command palette.

Summary
By the end of this chapter we should have Sublime Text with Package Control
installed on our system, and all the necessary shortcuts for Sublime commands in
the CLI. We have also learned how to navigate the user interface and had a sneak
peak of some of the cool features of Sublime.

In the next chapter, we are going to touch some code and learn more advanced
techniques for navigating and code editing in Sublime.

Code Editing
This chapter will guide us from Sublime's basic features to its most advanced ones,
and explore techniques to use while editing code. We will also install two important
plugins for most languages and master Sublime's Shortcuts Map.

In this chapter we will cover the following topics:

• Discovering Search and Replace
• Mastering Column and Multiple Selection
• Navigating through Project, Files, and Classes
• Using the must-have SublimeCodeIntel
• Linting with SublimeLinter
• The must-know Shortcuts Map

Discovering Search and Replace
Search and Replace is one of the common actions for any text editor. Sublime Text
has two main search features:

• Single file
• Multiple files

Before covering these topics, let's talk about the best tool available for searching text
and especially, patterns; namely, Regular Expressions.

Code Editing

[22]

Regular Expressions
Regular Expressions can find complex patterns in text. To take full advantage of
the Search and Replace features of Sublime, you should at least know the basics of
Regular Expressions, also known as regex or regexp. Regular Expressions can be
really annoying, painful, and joyful at the same time!

We won't cover Regular Expressions in this book because it's an endless topic.
We will only note that Sublime Text uses the Boost's Perl Syntax for Regular
Expressions; this can be found at http://www.boost.org/doc/libs/1_47_0/
libs/regex/doc/html/boost_regex/syntax/perl_syntax.html

I recommend going to http://www.regular-expressions.info/
quickstart.html if you are not familiar with Regular Expressions.

Search and Replace – a single file
Let's open the Search panel by pressing Ctrl + F on Windows and Linux or command
+ F on OS X. The search panel options can be controlled using keyboard shortcuts:

Search panel options Windows/Linux OS X
Toggle Regular Expressions Alt + R command + Option + R
Toggle Case Sensitivity Alt + C command + Option + C
Toggle Exact Match Alt + W command + Option + W
Find Next Enter Enter
Find Previous Shift + Enter Shift + Enter
Find All Alt + Enter Option + Enter

Chapter 2

[23]

As we can see in the following screenshot, we have the Regular Expression option
turned on:

Let's try Search and Replace now by pressing Ctrl + H on Windows and Linux or
Option + command + F on OS X and examining the following screenshot:

Code Editing

[24]

We can see that this time, both the Regular Expression option and the Case
Sensitivity option are turned on. Because of the Case Sensitivity option being on,
line 8 isn't selected, the pattern messages/(\d) doesn't match line 2 because \d only
matches numbers, and the \1 on the Replace with field will replace match group
number 1, indicated by the parentheses around \d.

We can also refer to the group by using $1 instead of \1.

Let's see what happens after we press Ctrl + Alt + Enter for Replace All:

We can see that lines 2 and 8 still say messages and not message; that's exactly what
we expected!

The incremental search
Incremental search is another cool feature that is here to save us keyboard clicks.
We can bring up the incremental search panel by pressing Ctrl + I on Windows and
Linux or command + I on OS X. The only difference between the incremental search
and a regular search is the behavior of the Enter key; in incremental searches, the
Enter key will select the next match and dismiss the search panel. This saves us from
pressing Esc to dismiss the regular search panel.

Chapter 2

[25]

Search and Replace – multiple files
Sublime Text also allows a multiple file search by pressing Ctrl + Shift + F or command
+ Shift + F on OS X. The same shortcuts from the single file search also apply here;
the difference is that we have the Where field and a … button near it. The Where
field determines where the files can be searched for; we can define the scope of the
search in several ways:

• Adding individual directories (Unix-style paths, even on Windows)
• Adding/excluding files based on the wildcard pattern
• Adding Sublime-symbolic locations such as <open folders>, <open files>

We can also combine filters by separating them with commas in the following manner:

/C/Users/Dan/Cool Project,*.rb,<open files>

This will look in all files in C:\Users\Dan\Cool Project that end with .rb and are
currently open by Sublime.

Results will be opened in a new tab called Find Results, containing all found results
separated by file paths. Double clicking on a result will take you to the exact location
of the result in the original file.

Mastering Column and Multiple Selection
Multiple Selections is one of Sublime's coolest features; TextMate users might be
familiar with it. So how can we select multiple lines? We select one line like we
usually do and select the second line while holding Ctrl or command on OS X.
We can also subtract a line by holding the Alt key or command + Shift keys on OS X.
This feature is really useful and it is recommended that you play with it.
The following are some shortcuts that can help us feel more comfortable with
multiple selections:

Multiple selection action Windows/Linux OS X
Return to Single Selection Mode Esc Esc
Undo last selection motion Ctrl + U command + U
Add next occurrence of selected text to
selection

Ctrl + D command + D

Add all occurrences of selected text to
selection

Alt + F3 Control + command + G

Turn Single Linear Selection into Block
Selection

Ctrl + Shift + L Shift + command + L

Code Editing

[26]

Column Selection
The Column Selection feature is one of my favorites! We can select multiple lines by
pressing Shift and dragging the right mouse button on Windows and Linux, or Linux
and pressing Option and dragging the left mouse button on OS X. Here we want to
remove the letter s from messages, as shown in the following screenshot:

We have selected all s using Column selection; now we just need to hit backspace to
delete them.

Navigating through everything
Sublime is known for its ability to quickly move between and around files and lines.
In this section, we are going to master how to navigate our code quickly and easily.

Go To Anything
We already learned how to use the Go To Anything feature, but it can do more than
just searching for filenames. We can conduct a fuzzy search inside a "fuzzily found"
file. Really? Yeah, we can. For example, we can type the following inside the Go To
Anything window:

isl#wld

This will make Sublime perform a fuzzy search for wld inside the file that we found
by fuzzy searching isl; it can thus find the word world inside a file named island.

We can also perform a fuzzy search in the current file by pressing Ctrl +; in
Windows or Linux and command + P, # in OS X. It is very common to use fuzzy
search inside HTML files because it immediately shows all the elements and classes
that match, accelerating navigation.

Chapter 2

[27]

Symbol search
Sometimes we want to search for a specific function or class inside the current file.
With Sublime we can do it simply by pressing Ctrl + R on Windows or Linux and
command + R on OS X.

Projects
A project is a group of files and folders. To save a project we just need to add folders
and files to the sidebar, and then from the menu, we navigate to Project | Save
Project As…

The saved file is our projects data, and it is stored in a JSON formatted file with a
.sublime-project extension. The following is a sample project file:

{
 "folders":
 [
 {
 "path": "src",
 "follow_symlinks": true
 },
 {
 "path": "docs",
 "name": "Documentation",
 "file_exclude_patterns": ["*.xml"]
 }
],

Code Editing

[28]

 "settings":
 {
 "tab_size": 6
 },
 "build_systems":
 [
 {
 "name": "List",
 "shell_cmd": "ls -l"
 }
]
}

As we can see in the preceding code, there are three elements written as JSON arrays.

Folders
Each folder must have a valid folder path that can be absolute or relative to the
project directory, which is where the project file is. A folder can also include the
following keys:

• name: This is the name that will be shown on the sidebar
• file_execlude_pattern: This folder will exclude all the files matching the

given Regular Expression
• file_include_pattern: This folder will include only files matching the

given Regular Expression
• folder_execlude_pattern: This folder will exclude all subfolders matching

the given Regular Expression
• folder_include_pattern: This folder will include only subfolders matching

the given Regular Expression
• follow_symlinks: This will include symlinks if set to true

Settings
The project-specific settings array will contain all the settings that we want to apply
only to this project. These settings will override our global user settings.

Chapter 2

[29]

Build systems
In an array of build system definitions, we must specify a name for each definition;
these build systems will then be specified in Tools | Build Systems.

For more information about build systems, please visit http://
sublimetext.info/docs/en/reference/build_systems.html.

Navigating between projects
To switch between projects quickly, we can press Ctrl + Alt + P in Windows or Linux
and Control + command + P in OS X.

Using the must-have SublimeCodeIntel
SublimeCodeIntel is a must-have plugin. Its main features are:

• The Jump to Symbol Definition feature, which allows a user to jump to the
file and line of the defining symbol

• It Imports autocomplete and displays the available modules/symbols in
real time

• The Function Call tooltips display information in the status bar about the
working function

Installing SublimeCodeIntel
We can easily install this plugin using the Package Control utility that we
installed earlier. Let's open it up by pressing Ctrl + Shift + P in Windows or
Linux and command + Shift + P in OS X. Choose Install Package and install the
SublimeCodeIntel plugin. We will then need to restart Sublime.

When it first starts, SublimeCodeIntel needs to build an index of the languages
you're using. Depending on the number of modules/libraries you have installed
and the size and complexity of the project you're working on, this can take some
time. Be patient though, it will be well worth it when it's ready.

Code Editing

[30]

Using SublimeCodeIntel
After SublimeCodeIntel finishes indexing, start typing code as usual; autocomplete
will pop up whenever it's available. SublimeCodeIntel shortcuts map:

SublimeCodeIntel
action

Windows Linux OS X

Jump to definition Alt + Left Mouse
Click

Super + Left Mouse Click Control + Left Mouse
Click

Jump to definition Control + Windows +
Alt + Up

Control + Super + Alt
+ Up

Control + command
+ Option + Up

Go Back Control + Windows +
Alt + Left

Control + Super + Alt
+ Left

Control + command
+ Option + Left

Manual Code
Intelligence

Control + Shift +
Space

Control + Shift + Space Control + Shift +
Space

Configuring SublimeCodeIntel
To add additional libraries such as Django, extra paths for Python or extra paths to
look for .js files for JavaScript, we can edit the codeintel config file that is located
at ~/.codeintel/config in Linux or OS X and C:\Users\username\.codeintel\
config in Windows. By default, this file will be an empty JSON-formatted file.
Here is an example for optional configuration:

{
 "PHP": {
 "php": '/usr/bin/php',
 "phpExtraPaths": [],
 "phpConfigFile": 'php.ini'
 },
 "JavaScript": {
 "javascriptExtraPaths": []
 },
 "Ruby": {
 "ruby": "/usr/bin/ruby",
 "rubyExtraPaths": []
 },
 "Python": {
 "python": '/usr/bin/python',
 "pythonExtraPaths": [
 "/usr/local/lib/python2.7/site-packages "
]
 }}

Chapter 2

[31]

Linting with SublimeLinter
Linting is a term for flagging suspicious and non-portable constructs, likely to be
bugs in any written language. SublimeLinter is a plugin that supports linting and
has the following linters built in:

• C/C++: This lints via cppcheck
• CoffeeScript: This lints via coffee –s –l
• CSS: This lints via built-in csslint
• Haml: This checks syntax via haml –c
• HTML: This lints via tidy
• Java: This lints via javac –Xlint
• JavaScript: This lints via built in jshint, jslint, or gjslint (if installed)
• Lua: This checks syntax via luac
• Objective-J: This lints via built in capp_lint
• Perl: This lints via Perl::Critic or syntax and deprecation check via

perl-c

• PHP: This checks syntax via php –l
• Puppet: This checks syntax via puppet parser validate
• Python: This is a native, moderately-complete lint
• Ruby: This checks syntax via ruby –wc
• XML: This lints via xmllint

Installing SublimeLinter
We can install this plugin by using the Package Control that we installed earlier. Let's
open it by pressing Ctrl + Shift + P in Windows or Linux and command + Shift + P in OS
X; choose Install Package and install the SublimeLinter plugin.

Using SublimeLinter
SublimeLinter can run in four different modes; the current mode is set by the
sublimelinter key in the user settings:

• Background mode (default): When the sublimelinter key is set to true,
linting is performed constantly in the background while we modify the file.

• Load-save mode: When the sublimelinter key is set to load-save, linting
will be performed when a file is loaded and after the file is saved.

Code Editing

[32]

• Save-only mode: When the sublimelinter key is set to save-only, linting
is performed only after a file is saved.

• On demand Mode: When the sublimelinter key is set to false, linting
will only be initiated by us. We can initiate a lint by pressing Ctrl + Alt + L
on Windows or Linux and Control + command + L on OS X.

We can also control all SublimeLinter settings and initiate an instant lint from
the command palette. Press Ctrl + Shift + P or command + Shift + P and type
SublimeLinter:; you will see all the options for quick linting and quick
mode changing.

Configuring SublimeLinter
There are a number of customizations that SublimeLinter supports:

• Custom Linters
• Per project settings
• Customizing colors

We won't cover these customizations in this book, but we can always go to https://
github.com/SublimeLinter/SublimeLinter, and learn more about them.

The must-know shortcuts map
The following is a must-know shortcuts map for Sublime Text:

General
General shortcuts for Sublime's basic features are as follows:

Command Windows/Linux OS X
Open the command palette Ctrl + Shift + P command + Shift + P
Toggle Side Bar Ctrl + KB command + KB
Show scope in status bar Ctrl + Shift + Alt + P Control + Shift + P
Python Console Ctrl + ` Control + `
New Window Ctrl + Shift + N command + Shift + N

Chapter 2

[33]

Tabs
Shortcuts to control tabbing in Sublime:

Command Windows/Linux OS X
New Tab Ctrl + N command + N
Close Tab Ctrl + W command + W
Open last closed Tab Ctrl + Shift + T command + Shift + T
Next Tab Ctrl + Tab Control + Tab
Previous Tab Ctrl + Shift+Tab Control + Shift + Tab

Bookmarks
Bookmarks are similar to the favorites option while surfing in the Web; we can
toggle bookmarks on lines and then jump between them. Here are the shortcuts
for using Bookmarks:

Command Windows/Linux OS X
Toggle Bookmark Ctrl + F2 command + F2
Next Bookmark F2 F2
Previous Bookmark Shift + F2 Shift + F2
Clear Bookmarks Ctrl + Shift + F2 command + Shift + F2

Editing
All Sublime shortcuts that are related to editing text/code:

Command Windows/Linux OS X
Delete line Ctrl + X command + X
Insert line after Ctrl + Enter command + Enter
Insert line before Ctrl + Shift + Enter command + Shift + Enter
Move line Up/Down Ctrl + Shift + the up/

down arrow key
command + Control + the up/
down arrow key

Select line Ctrl + L command + L
Select word Ctrl + D command + D
Jump to matching bracket Ctrl + M Control + M
Delete from cursor to end of
line

Ctrl + KK command + KK

Code Editing

[34]

Command Windows/Linux OS X
Delete from cursor to start of
line

Ctrl + K + backspace command + K + backsapce

Indent current lines Ctrl +] command +]
Un-indent current lines Ctrl + [command + [
Duplicate lines Ctrl + Shift + D command + Shift + D
Join lines Ctrl + J command + J
Toggle comment for current
line

Ctrl + / command + /

Block comment selection Ctrl + Shift + / command + Option + /
Undo Ctrl + Z command + Z
Redo Ctrl + Y command + Y
Soft Undo Ctrl + U Control + U
Soft Redo Ctrl + Shift + U command + Shift + U
Next auto-complete suggestion Ctrl + Space Control + Space
Paste and indent correctly Ctrl + Shift + V command + Shift + V

Summary
By now we should have mastered code editing and keyboard shortcuts; we can now
work on any project in any language with the help of Lint and Code Intelligence.

It is important to know that SublimeLinter and SublimeCodeIntel do not support all
kinds of projects and languages. They are also not the right choice for you if you are
developing in a specific language; there may be a plugin that fits your requirement
better. In the next chapter we are going to learn what Snippets, Macros, and Key
Bindings are, and even make our own snippet!

Snippets, Macros, and Key
Bindings

This chapter will help you to master snippet and macro skills and guide you through
customizing and managing your key bindings. In this chapter we will cover the
following topics:

• Getting to know a snippet
• Understanding your first snippet
• Using Package Control snippets
• Recording, editing, and using macros
• New key bindings

Getting to know a snippet
As developers, we all get to write the same short code fragments over and over again
on different files and projects. The best example of this is the following code:

<!DOCTYPE html>
<html>
 <head>
 <title> My cool Website </title>
 </head>
 <body>
 <p> Hello World! </p>
 </body>
</html>

Snippets, Macros, and Key Bindings

[36]

We all have written something similar so many times. That's why Sublime has the
snippets feature. Snippets are smart templates that insert the right text when we
need it, where we need it.

Let's see this example live by using Lorem ipsum. We have this empty HTML
page that we wrote using our awesome, fast fingers. Now we want to enter some
placeholder text inside the <p> tags, as shown in the following screenshot:

We just type the trigger letter for our snippet, in this case l, and we get all the
options. Pressing Tab will insert the snippet as shown in the following screenshot:

Yes! We now have a Lorem ipsum. We could also achieve this by writing lore and
pressing Ctrl + space on Windows, Linux, and OS X. Because we do not have other
snippets starting with lore, Sublime will know exactly what we meant.

Chapter 3

[37]

Understanding your first snippet
We learned that snippets can be very helpful, so how about creating our own?
We'll make an awesome HTML snippet, better than the one in the preceding
example. First, let's have a look at how snippets work in more detail.

How do snippets work?
Snippets can be saved under any package folder, but we'll start with saving our
snippets under Packages/User. Snippets must live in a Sublime package.

File format and syntax
Snippets are simple XML-formatted files with the extension sublime-snippet.
The root XML tag will always be <snippet> and will then contain the following:

• Content: This tag represents the actual snippet.
 ° If we want to write $, we'll need to escape it with \$.
 ° For indentation, use tabs only. If the translate_tabs_to_spaces

option is set to true, tabs will be transformed to spaces automatically
when the snippet is inserted.

 ° The Content tag must contain the <![CDATA[…]]> section. Snippets
won't work if we won't do it.

 ° Also, the Content tag cannot contain]]> because these three
characters will close the <!CDATA[…]]> section, and this will cause
an XML error. A cool workaround for this is placing an undefined
variable, for example,]]$UNDEFINED_VAR>. The XML parser will
replace any undefined variables with empty strings.

• tabTrigger: This tag contains a sequence of characters that will trigger the
snippet when written. After writing these characters, pressing Tab will insert
the snippet immediately.

• Scope: This is the scope in which the snippet will be active.
 ° To get our current scope, press Ctrl + Shift + Alt + P on Windows/

Linux and Control + Shift + P on OS X, and then check the status bar
for the current scope.

 ° All Sublime Text 3 scopes can be found at http://gist.github.
com/danpe/6993237.

• Description: A short and intuitive description for the snippet, which will be
shown when the snippet's menu is open.

Snippets, Macros, and Key Bindings

[38]

ScopeHunter is a great plugin when working with scopes; we can
install it from Package Control.

Knowing about snippets' features
Snippets have some extra features that can be really helpful such as inserting
copyrights on code, inserting default file structures, or just helping us type functions
faster. We will cover all that you need to know about snippets so that you can take
full advantage of them.

Environment variables
We learned about Sublime's environment variables in a previous chapter. Snippets
can also access these variables, which can be very convenient as shown in the
following example:

$TM_FILENAME – Filename of current file
$TM_LINE_NUMBER – Current row

The full list of Sublime Text environment variables can be found at http://gist.
github.com/danpe/6996806.

Field markers
Field Markers will let us cycle between our snippet's field markers by pressing Tab.
We'll use fields for customizing a snippet after it's been inserted.

Mirrored field markers
Identical field markers mirror what we write on one of them. When we edit the first
mirrored field marker, the rest will change in real time to the same values.

Placeholders
We can even put some default values, which are called placeholders. Let's see a full
example of field markers' usage:

Hello ${1:$TM_FULLNAME}!
We are $2, The best Snippets Team!
$2 Helps making snippets since 1999.

As we can see in this example, the cursor will start on $1 with a default value of an
environment variable. Cool! We can put any value though. Next, the cursor will
jump to the $2 on the second line and will mirror the value we write to $2 in the
third line.

Chapter 3

[39]

Creating our first snippet
We are going to make a cool HTML5 structure snippet. Let's go to Tools | New
Snippet… and Sublime will open a new snippet template for us, as shown in the
following screenshot:

Move the cursor over the commented line and remove the comments easily by
pressing Ctrl + / on Windows or Linux and Command + / on OS X. Let's have a look
at the following code:

<snippet>
 <content><![CDATA[<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="description" content="$1">
 <meta name="viewport" content="width=device-width, initial
scale=1">
 <title>${2:Untitled}</title>
 </head>
 <body>
 Hello ${3:$TM_FULLNAME}! Welcome to $2!
 $0
 </body>
</html>]]>
 </content>
 <tabTrigger>doctype</tabTrigger>
 <description>HTML5 Structure</description>
 <scope>text.html</scope>
</snippet>

Snippets, Macros, and Key Bindings

[40]

The good thing about snippets is that they are self-explanatory, but we'll still go over
this one.

Writing doctype in a .html file and pressing Tab will insert the snippet and the
cursor will jump to fill in the description meta tag. Pressing Tab again will make the
cursor jump to fill in the title, which is filled with a default value of Untitled.
The value that we'll insert will be mirrored inside the body on variable $2. Pressing
Tab again will take the cursor to fill variable $3, which has the default value of an
environment variable. Pressing Esc at any time will take us to the snippet's exit
point which is variable $0, or the end of the snippet, if not specified. We can also
go backward while editing a field by pressing Shift + Tab. Let's save this file inside
Packages/User/doctype.sublime-snippet.

We can now open any .html file and use our snippet, as shown in the
following screenshot:

Pressing Enter/Tab will result in the following:

Chapter 3

[41]

Using Package Control snippets
We can spend all day long writing snippets, or we can find awesome snippets
created by Sublime's awesome community.

Just like installing any other plugin, we can go to Install Package and look for snippets'
packages. Here are some packages I recommend you use for web development:

Package name Languages
EvercodeLab Sublime snippets Ruby on Rails, ERB, Symfony 2
Additional PHP snippets PHP
jQuery snippets pack jQuery
Twitter Bootstrap snippets Twitter Bootstrap
AngularJS AngularJS
HTML snippets HTML
JavaScript snippets JavaScript

To find more awesome snippets go to https://sublime.wbond.net/browse/
labels/snippets.

Recording, editing, and using macros
Macros can be very helpful; they are saved with the .sublime-macro extensions as
a JSON-formatted file.

Before creating a new macro, we should understand what the use case is. If we find
ourselves doing the same actions over and over again, we should use a macro for it.
For example, when writing C# code, we always go to the end of the line to insert a
semicolon and press Enter. How can we do this faster?

Recording a macro
To record a macro, simply press Ctrl + Q on Windows or Linux and Control + Q on
OS X. We will notice that the status bar says Starting to record macro…, as shown
in the following screenshot:

Snippets, Macros, and Key Bindings

[42]

Let's record the macro. Press Ctrl + right arrow + ; + Enter on Windows or Linux
and Command + Right Arrow + ; + Return on OS X. Finally, press Ctrl + Q to
stop recording.

Playing a macro
To play the recorded macro, simply press Ctrl + Shift + Q on Windows or Linux and
Control + Shift + Q on OS X. Sublime will always play the last recorded macro.

Saving and editing
We can also save the recorded macro and edit it manually. Let's go to Tools | Save
Macro… and save it under Packages/User/semicolon.sublime-macro. When
opened open it for editing, we should see the following:

[
 { "args": { "to": "eol" }, "command": "move_to" },
 { "args": { "characters": ";" }, "command": "insert" },
 { "args": { "characters": "\n" }, "command": "insert" }
]

We can edit the macro to insert); instead of ; just by changing the value of
"characters" in the second row to ");".

For the full list of commands, visit http://docs.sublimetext.info/en/
sublime-text-3/reference/commands.html.

Binding a saved macro
We recorded, saved, and edited our macro. Now, we want to make it accessible
for later use, and one way of doing this is by binding the macro to a shortcut key.
We will do this by defining a new key binding to our macro.

New key bindings
Let's open the user default key bindings by going to Preferences | Key
Bindings-User. This will open a new file (should be an empty JSON array) named
Default (OS).sublime-keymap, where OS is replaced with our operating system.

Chapter 3

[43]

Let's add the following line to the array:

{ "keys": ["super+alt+;"], "command": "run_macro_file",
 "args": {"file": "Packages/User/semicolon.sublime-macro"} }

This line will run the macro that is located in Packages/User and is named
semicolon.sublime-macro when pressing Super + Alt + ;, Super is WinKey
in Windows or Linux and Command on OS X. Our file should look like the
following screenshot:

Once you save this file, you can run the macro using the specified shortcut.

All commands used by shortcuts are the same commands that are
used by the macros.

Summary
We are stocked with snippets, both our own and from the community. We have
recorded a macro, saved it, and bound it to a shortcut key.

In the next chapter we are going to learn about overriding existing key bindings and
how to avoid collisions. We will also learn how to customize Sublime's base settings,
Colors, and Themes. We'll even create our own theme.

And for dessert, we will play with Splitting Windows in Sublime.

Customization and Theme
Development

This chapter will give us the ability to fully customize our Sublime Text's look
and feel. We will also customize our own color theme. And as a bonus, we will
check out the Split Windows feature.

In this chapter we will cover the following topics:

• Overriding and maintaining key bindings
• Understanding Sublime's base settings
• Beautifying Sublime with colors and themes
• Mastering Split Windows

Overriding and maintaining key bindings
In the previous chapter, we bound as key combination to our macro.
Sublime also gives us the option to bind keys to any command by adding
custom key bindings; but what are key bindings exactly? In one sentence:

"Key bindings map key presses to commands."

All of Sublime's key bindings are configurable by JSON-formatted
.sublime-keymap files.

Customization and Theme Development

[46]

Platform-specific key bindings
Key bindings can be different per platform; their filename has to be one of
the following:

• Default (Windows).sublime-keymap

• Default (OSX).sublime-keymap

• Default (Linux).sublime-keymap

These file names are platform dependent; this means that the key bindings defined
in the Windows keymap file will only work if we are on Windows or other OSes. It is
important to know that user-specified key bindings need to be placed in Packages/
User/Default (<platform>).sublime-keymap.

Key map file structure
A key map is an array of key bindings. Each key binding contains the
following elements:

• keys: This contains an array of case-sensitive keys that needs to be pressed to
trigger the key binding. We can make chords by using an array, for example,
["ctrl+k", "ctrl+b"].

• command: This contains the command to be executed.
• args (optional): This contains a dictionary of parameters to be passed to the

command element.
• context (optional): This contains an array of contexts that will enable the

key binding. All contexts must be true for the key binding to be enabled.

Here's an example from the Windows default key map:

[
 { "keys": ["ctrl+n"], "command": "new_file" },
 { "keys": ["ctrl+shift+n"], "command": "new_window" }
]

The first key binding will open a new tab when Ctrl + N is pressed, and the second
key binding will open a new window when Ctrl + Shift + N is pressed.

For a list of all available commands, visit either http://gist.
github.com/danpe/7189451 or http://docs.sublimetext.
info/en/sublime-text-3/reference/commands.html.

Chapter 4

[47]

Bindable keys
Sublime supports almost all keyboard keys as bindable keys. Here is the full list of all
the keyboard keys that can be used with key bindings:

Up down right left insert browser_back

home end pageup pagedown backspace browser_
forward

delete tab enter pause escape browser_
refresh

space keypad0 keypad1 keypad2 keypad3 browser_search

keypad4 keypad5 keypad6 keypad7 keypad8 browser_stop

keypad9 clear f1 f2 f3 browser_home

f4 f5 f6 f7 f8 browser_
favorites

f9 f10 f11 f12 f13 keypad_period

f14 f15 f16 f17 f18 keypad_divide

f19 f20 sysreq break shift keypad_
multiply

ctrl alt super context_
menu

keypad_
plus

keypad_minus

We have some restrictions though. On Windows, we should not use Ctrl + Alt + an
alphanumeric key, while on OS X, we should not use Option + an alphanumeric key
Number keys cannot be bound. For example, we cannot use Ctrl+7.

Advanced key bindings
Simple key bindings include only BoundKeys and a command. However, we can
also make more advanced key bindings by passing arguments to the command using
the args key; for example:

{ "keys": ["enter"], "command": "insert", "args": {"characters": "\n"}
}

In this key binding, we pass \n to the insert command when we press Enter.
More advanced key bindings can be achieved using contexts. A context determines
if the command will be executed based on the caret's position or some other state.
For example:

{ "keys": ["escape"], "command": "hide_auto_complete", "context":
 [
 { "key": "auto_complete_visible", "operator": "equal",

Customization and Theme Development

[48]

"operand": true }
]
}

This key binding will hide autocomplete when Esc is pressed, but only if
autocomplete is visible; if not, this command won't get triggered.

For a list of all available contexts, visit either http://gist.github.
com/danpe/7189722 or http://docs.sublimetext.info/en/
sublime-text-3/reference/key_bindings.html.

Keeping our key bindings organized
A big problem is that Sublime keeps track of all the key bindings we have. So first,
let's understand how Sublime knows when a key binding needs to override another
key binding.

Sublime will start loading all the key bindings located in Packages/Default; then,
it will sort all the installed packages in an alphabetic order and load them one after
another. The last one to be loaded will always be Packages/User. Each keymap file
that is being loaded will override any other key bindings that have been loaded
before it in case of a key conflict. This means that Packages/User will override all
the key bindings because it is being loaded last.

Don't be afraid to read the preceding information twice. It's important
to know how Sublime handles key bindings.

Lucky for us, we have an awesome plugin that can help us manage our key bindings
and detect collisions and conflict. It is called BoundKey, and can be installed using
our favorite Package Control! Let's open up the command palette by pressing Ctrl +
Shift + P in Windows or Linux and Command + Shift + P in OS X. Then, we'll choose
Install Package and install the BoundKeys plugin.

Chapter 4

[49]

After installing it, we simply need to press Shift + F10 to get a full, detailed list of all
the BoundKeys and conflicts, if any.

The FindKeyConflicts plugin is also recommended, and can be found
at https://github.com/skuroda/FindKeyConflicts.

Understanding Sublime's base settings
As we saw, Sublime Text can be fully customized to fit our needs. It stores its
settings in JSON-formatted .sublims-settings files. Sublime will load these
settings files in the same order that it loads the keymap files. This means that our
settings that are stored in Packages/User will always override all other settings
except those that have been changed in the current buffer.

The types of settings' files
Each settings file has a prefix that defines its purpose. These prefixes are names
that can be descriptive, such as Preferences (Windows).sublime-settings.
This means that the file applies only to Windows. We can also specify the file type
in the descriptive name, for example, Ruby.sublime-settings. This means that
the file applies only when editing Ruby code files.

Customization and Theme Development

[50]

Customization walkthrough
In this section, we are going to customize Sublime to fit our coding style. Feel free to
change the settings with whatever fits your style.

Adding packages
Let's start with adding some basic packages; download and install the following:

• SideBarEnhancements: This package adds useful file operations to the
sidebar, such as a new file or new folder.

• TrailingSpaces: We all hate trailing whitespaces in our code! This package
strips trailing whitespaces from our files.

We can install these packages using Package Control.

Tabs and spaces
Now, let's open Sublime's settings. We can choose which file we want to edit. If we
want to edit Sublime's global settings, we will open it by navigating to Preferences
| Settings | Default, and if we want to edit specific user settings, we will open it by
navigating to Preferences | Settings-User. Add/change the following code:

{
 "tab_size": 2,
 "translate_tab_to_spaces": true
}

If you installed the TrailingSpaces package, it is recommended that you add the
following code to the global settings:

"trim_trailing_white_space_on_save": true

Now every time we save a file, TrailingSpaces will remove all the trailing
whitespaces from our file.

For a full list of the settings, visit http://docs.sublimetext.
info/en/sublime-text-3/reference/settings.html.

Chapter 4

[51]

Beautifying Sublime with colors and
themes
Sublime Text can be a beauty! We can change Sublime's visual experience by
changing its base settings, color schemes, and themes.

Visual settings
Let's start by tweaking Sublime's settings to change visual elements; for example,
we can highlight the current line, change the caret style, show fold buttons, boldface
folder names, and highlight modified tabs. We are going to do this by opening our
user preferences and adding some visual settings to it. The following numbered
bullets refer to the labels on the next screenshot:

1. "highlight_line": true, "caret_style": "phase"
2. "fade_fold_buttons": false
3. "bold_folder_labels": true
4. "highlight_modified_tabs": true

The following screenshot shows the output of the visual settings:

This is cool but not enough for us; we want Sublime to be more awesome!

Customization and Theme Development

[52]

Sublime themes
Themes are JSON-formatted files with a .sublime-theme extension. Sublime themes
modify Sublime's look and feel by changing icons and IDE colors.

Let's try downloading and installing the most popular theme, the soda theme, online.
It's easy to install using Package Control. Open the command palette by pressing
Ctrl + Shift + P in Windows or Linux and Command + Shift + P in OS X. Choose
Install Package and install the Theme - Soda package. After installing the theme, we
need to activate it. Let's open the user settings again by navigating to Preferences |
Settings | User and add either "theme": "Soda Light 3.sublime-theme" for the
light theme or "theme": "Soda Dark 3.sublime-theme" for the dark one. Also,
we'll add "soda_folder_icons": true for the custom folder icons.

Wow! The folder icons, tabs styles, and search icons have been changed! Everything
looks sleek. But now, we wish to change the colors.

Color schemes
Color schemes are XML-formatted files with a .tmTheme extension; they are
located at Packages/Color Scheme – Default and can be changed at any time
from the Sublime menu in Preferences | Color Scheme | Theme. Color schemes
are an awesome way to fully customize Sublime's colors, while themes alter the
UI Elements only. Let's try changing our color scheme to Sunburst by going to
Preferences | Color Scheme | Sunburst.

Chapter 4

[53]

We can also download custom color themes from the Web and install them by
placing the .tmTheme files inside Packages/User. They will show up in Sublime's
menu automatically.

The best way to create our custom color scheme is using this great online tool
available at http://tmtheme-editor.herokuapp.com.

A recommended color scheme is the neon color scheme that aims to
make as many languages as possible look as good a possible with
bright colors on black colors. It can be installed through Package
Control or can be found at https://github.com/MattDMo/
Neon-color-scheme.

Mastering Split Windows
Sublime Text includes one of the most useful productivity features that is out
there—Split Windows! We all know this from vi and Visual Studio, but how can
we split our Sublime? We simply need to memorize some shortcut keys.

Customization and Theme Development

[54]

Let's split our window into two columns using Alt + Shift + 2 on Windows or
Linux and Option + Command + 2 on OS X as shown in the following screenshot:

We got a new empty column. Now, we need to move a file there. We'll do it by
pressing Ctrl + Shift + 2 on Windows or Linux and Control + Shift + 2 on OS X as
shown in the following screenshot:

This feature is very useful when working with source and header files, or even
when comparing two files. We can also open up a grid by pressing Alt + Shift + 5
on Windows or Linux and Option + Command + 5 on OS X as shown in the
following screenshot:

Chapter 4

[55]

To master this skill, we'll need to memorize the following shortcuts:

Split Windows shortcuts Windows/Linux OS X
Single window Alt + Shift + 1 Option + Command + 1
Two to four columns Alt + Shift + [2/3/4] Command + Option + [2/3/4]
Two rows Alt + Shift + 8 Command + Option + 8
Three rows Alt + Shift + 9 Command + Option + 9
Grid, Two columns, Two rows Alt + Shift + 5 Command + Option + 5
Move current file to group # Ctrl + Shift + [1/3/4] Control + Shift + [1/3/4]
Focus group # Ctrl + [1/2/3/4] Control + [1/3/4]

Summary
By the end of this chapter, we have a beautiful, customized Sublime Text application!
We have learned how to bind keys to custom actions and how to split Sublime into
rows and columns.

The next chapter is for the vi fans among us; we will introduce Sublime's Vintage
feature and learn how we can make Sublime more like vi.

Unravelling Vintage Mode
This chapter is for the vi fans among us. In this chapter, we will cover the
following topics:

• Understanding Vintage Mode
• Setting up Vintage Mode
• Experiencing Vintage Mode
• Knowing about Vintageous

Understanding Vintage Mode
Vintage Mode is a package that gives Sublime the editing features of vi. It allows us
to use vi's commands while also having the advantage of Sublime's features, such as
multiple selections that we learned before. Vintage Mode is an open source project
and can be found at http://github.com/sublimehq/Vintage.

Discovering vi
vi is a an old but still very popular text editor. vi was originally created for Unix
operating systems. The original vi was written in 1976 as an open source project.
Surprisingly, it's still being used today because of its speed, small size, and portability.
It is a popular command line editor (for example, in server environments) because it
does not require a mouse.

Many different vi ports have been developed since its original release. One of the
most popular of them is vim (vi improved), which supports customization like
Sublime does, with macros, plugins, and key mappings.

Unravelling Vintage Mode

[58]

The following is a screenshot of a spilt-windowed vi screen, which is not as great as
our customized Sublime:

Setting up Vintage Mode
Vintage Mode is installed by default but is also disabled by default via the ignored_
packages settings that is set in User Preferences. To enable the Vintage Mode,
we'll need to remove it from the ignore packages list. To do this, let's open the user
settings by going to Preferences | Settings–User. The following code is present in
the user settings:

"ignored_packages":
[
"Vintage"
]

We will change the preceding code to the following one:

"ignored_packages": []

We have just enabled Vintage Mode! We should see INSERT MODE at the status
bar. Insert Mode is the mode where we can type freely.

Chapter 5

[59]

Experiencing Vintage Mode features
In this section, we are going to cover some vi commands, basic interactions, and
usage of the Vintage Mode. If you have used vi before, you can skip this section.

Vintage Mode will start in INSERT MODE by default instead of COMMAND
MODE; to change this behavior, we'll need to open up user settings again by going
to Preferences | Settings–User and then adding the following code:

"vintage_start_in_command_mode": true

Don't worry if you are still confused about Insert Mode and Command Mode by the
end of this chapter, you will understand it all.

Vintage editing modes
Vintage has four supported modes that can be switched between:

Mode Description Key
Command Mode Waits for the user to enter a command Esc
Insert Mode Text can be inserted in different positions i/I/a/A
Visual Mode Select/highlight the text using the Movement Commands V
Visual Line Mode Select/highlight lines of text using the arrow keys Shift + V

Vintage Mode commands
Vintage Mode includes most vi commands, though Ex commands are not
implemented. The only exceptions are :w and :e , which work from the
command palette.

For example, if we wish to copy three lines, we will use the Yank command which
is bound to the y key and press 3 for repeating the Yank command three times. This
will copy 3 lines forward from the current cursor position. The status bar will show
COMMAND MODE - Yank * 3.

To paste what we just copied, we'll press the p key. Mastering Vintage takes time and
effort, but it's worth it!

Here are the vi commands that are supported by Vintage Mode.

Unravelling Vintage Mode

[60]

Commands for changing modes
The following list contains all the shortcuts that enable us to switch between
different modes:

Command description Screen name Bound key
Go back to Command Mode COMMAND MODE Esc
Insert at the current cursor position INSERT MODE i
Insert after the current cursor position INSERT MODE a
Insert at the beginning of the current line INSERT MODE I
Insert at the end of the current line INSERT MODE A
Change to Visual Mode VISUAL MODE v
Change to Visual Line Mode VISUAL LINE MODE V

Movement commands
The following list contains all the movement commands that help us navigate
in Sublime while using Vintage Mode. These commands are the most important
commands to remember, and they will boost our productivity while using Vintage
Mode. These commands will not work in Insert Mode.

Command description Bound key
Move left h

Move down j

Move up k

Move right l

Move to the end of the file G

Move to the beginning of the file gg

Move forward a paragraph. }

Move backward a paragraph {

Move to the next word w

Move to the previous word b

Move to the end of the line $

Move to the beginning of the line ^

Move to the matching bracket %

Move to the next occurrence of the current word *

Chapter 5

[61]

For better practice with the movement commands, it is
recommended to install VintageLines using Package Control.

Editing commands
We can append most of the editing commands with a movement command, just like
we appended Yank with 3, where 3 means three lines; we could also appended it
with G for end of file.

Command description Screen name Bound key
Delete Delete d
Delete the whole current line Delete dd
Delete the character on the current position x
Copy Yank y
Copy the whole current line Yank yy
Paste the current Yank p
Lowercase Lower Case gu
Uppercase Upper Case $
Swap case Swap Case ^
Indent Indent >
Unindent Unindent <
Open search box for searching forward /
Open search box for searching backwards ?

In the preceding table, Delete, Copy, Lowercase, Uppercase, Swap case, Indent,
Unindent commands can be appended with a Movement command.

Knowing about Vintageous
Sublime's default Vintage Mode is a little outdated as well as VintageEx Mode,
which is only supported by Sublime Text 2, not 3. That's why Guillermo
(@guillermooo) created its own Vintage package for Sublime Text 3, which
emulates vi/vim more closely than the normal Vintage Mode.

Vintageous can be downloaded using Package Control, but we must first disable the
default Sublime's Vintage Mode so Vintageous can take over.

Unravelling Vintage Mode

[62]

We do this by adding back "Vintage" to "ignored_packages"; don't worry, all we
learned about Vintage Mode still applies for Vintageous.

For full information, visit the following link:

https://github.com/guillermooo/Vintageous

Summary
In this chapter, we have discovered what vi/vim is and the fact that we can use it
freely with all the shortcuts we mastered. It is important to know that vi functionality
is huge and never-ending; hence, it can't be covered in one chapter and needs a
whole book for it. We covered the basics.

I recommend having the vi graphical cheat sheet that can be found at
http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html.
Keeping a copy under your keyboard can be really helpful.

The next chapter will guide us on how to use Sublime for testing with several
languages such as PHP and Ruby.

Testing Using Sublime
This chapter will teach us how to use Sublime Text for testing our code in
different languages.

The following topics will be covered in this chapter:

• Introduction to testing in Sublime Text
• Testing in PHP development
• Testing in Python development
• Testing in Ruby development

Introduction to testing in Sublime Text
Every programmer makes mistakes; the difference between a good programmer
and a bad programmer is that a good programmer tests their code before releasing
it. This makes the programmer detect issues and bugs as soon as possible and fix
them before something goes wrong. Also, the sooner we fix a bug the less time
and cost it takes from us.

Sublime Text doesn't have any built-in features to help us test our code while
developing in different languages, but the community has made plugins that
work with standard testing packages for the most commonly used languages.
We can use those plugins to ease our code-testing. We will cover the following
plugins: PHPUnit for PHP, Unittest for Python, and RubyTest for Ruby.

Testing Using Sublime

[64]

Testing in PHP development
For the PHP developers among us who test their code using PHPUnit, Sublime has an
awesome plugin to support PHPUnit known as sublime-phpunit, written by Stuart
Herbert and located at http://github.com/stuartherbert/sublime-phpunit.

Knowing about PHPUnit
If you are a PHP developer and do not know what PHPUnit is, you should learn that
PHPUnit is "the standard" for unit testing in PHP projects. It combines a framework
that lets us easily write and run tests with the facility to analyze the results.

We can learn more about PHPUnit at https://github.com/sebastianbergmann/
phpunit/ or check the full manual at http://phpunit.de/manual/current/en/
index.html.

Using PHPUnit plugin for Sublime
Before using this plugin, we must have PHPUnit installed and functional in our
project and know how to use it, a topic which is not covered here. We'll then need to
download and install the PHPUnit plugin using Package Control. Let's open up the
command palette by pressing Ctrl + Shift + P in Windows or Linux and Command +
Shift + P in OS X. Then choose Install Package and install PHPUnit package. After
installing it, we can right-click on our code to see the new the PHPUnit option that
has been added to our context menu, as shown in the following screenshot:

Chapter 6

[65]

The options in PHPUnit are disabled because we are not currently inside a PHP
project. To use the PHPUnit plugin in our project, we'll need a phpunit.xml or
phpunit.xml.dist file. These files contain all the PHPUnit configuration options.
PHPUnit will always favor phpunit.xml over phpunit.xml.dist if both exist.
After your project is properly configured, right-clicking inside a source file should
show the following:

Stuart Herbert ©

As we can see in the preceding screenshot, we have three available options in the
PHPUnit menu:

• Test This Class…: This option will run the unit tests just for this class.
• Open Test Class: This option opens our tests in Sublime Text; if tests are

already open in Sublime this will switch between test's tabs.
• Run All Unit Tests…: This option runs all the unit tests for our code.

This option just points to our phpunit.xml file.

Test file names must match the original file names; for example, if our
class is called OurNamespace\OurClass.php, the plugin expects to
find our tests in a file called OurNamespace\OurClassTest.php
somewhere inside our project.

Testing Using Sublime

[66]

We can also find all the available PHPUnit commands inside the command palette
by pressing Ctrl + Shift + P on Windows or Linux and Command + Shift + P on OS X,
and type phpunit, as shown in the following screenshot:

In the preceding screenshot, we can see all available commands that the PHPUnit
plugin has to offer.

Helpful PHPUnit snippets
The PHPUnit plugin also includes some very helpful snippets to use while writing
our unit tests:

• phpunit-testcase: This will create a new test class for us to fill out
• phpunit-test: This will create a new test method for us to fill out

These snippets can be used like any regular snippet, by typing their names and
pressing the Tab key.

Testing in Python development
Python offers us unittest, an official unit testing framework for Python, sometimes
referred as PyUnit. It's like a Python version of JUnit for Java and written by Kent
Beck and Erich Gamma.

For more information on how to use unittest, visit: http://docs.
python.org/2/library/unittest.html

Currently the best package that helps us write Python unit tests is called
sublime-unittest written by Samuel Martin, which can be found at
https://github.com/martinsam/sublime-unittest.

Chapter 6

[67]

Using unittest for Sublime
Python's unittest for Sublime is a package that contains a number of useful snippets
to ease our unittest writing. To install the package, we'll use Package Control. Let's
open the command palette by pressing Ctrl + Shift + P in Windows or Linux and
Command + Shift + P in OS X. Then choose Install Package and install the Unittest
(python) package.

The installed package has two main snippets:

• testclass: This will create a new test class for us to fill out
class [Foo]TestCase(unittest.TestCase):
 …

• testfunc: This will create a new test function for us to fill out

def test_[foo](self):
 …

After creating a test function, we'll need to use some assertions, which the package
includes and also the following assertions snippets:

Snippet Function Checks that
asse assetEqual(first, second, msg=None) first = second
assne assertNotEqual(first, second,

msg=None)
first != second

asst assertTrue(expr, msg=None) bool(expr) is True
assf assertFalse(expr, msg=None) bool(expr) is

False

assis assertIs(first, second, msg=None) first is second
assisnt assertIsNot(first, second, msg=None) first is not second
assisne assertIsNone(expr, msg=None) expr is None
assisntne assertIsNotNone(expr, msg=None) expr is not None
assin assertIn(first, second, msg=None) first in second
assnin assertNotIn(first, second, msg=None) first not in second
assisins assertIsInstance(obj, cls, msg=None) isinstance(obj,

cls)

assnisins assertNotIsInstance(obj, cls,
msg=None)

not
isinstance(obj,
cls)

Testing Using Sublime

[68]

Let's try creating a new Test class using our snippets, starting with writing
testclass and pressing Tab to insert the snippet. We'll call our
TestSequenceFunctions class. We'll also create a test function called
test_shuffle using the testfunc snippet, as shown in the following screenshot:

When inserting a snippet, we will get the preceding autocomplete window.
Pressing Tab will insert the snippet.

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

 def setUp(self):
 self.sequence = range(30)

 def test_shuffle(self):
 # checks that the shuffled sequence doesn't lose any elements
while shuffling and sorting
 random.shuffle(self.sequence)
 self.sequence.sort()
 self.assertEqual(self.sequence, range(30), msg="Elements
missing")

if __name__ == '__main__':
 unittest.main()

Chapter 6

[69]

When this code is executed, the setUp function is the first to be called and will
initialize our sequence. After that, it will start to run all the test functions and
assert if something goes wrong. The test functions test_shuffle or random.
shuffle(self.sequence) will shuffle our sequence randomly, and then self.
sequence.sort() will sort it back. Afterwards, we check if our sorted sequence is
equal to range(30), which returns a sorted sequence from 0 to 30. If something went
wrong and the sequence doesn't equal the range of 0 to 30, then this test will fail with
a message of Elements missing.

We can run this code as we run every Python code:

C:\Users\Danpe\Desktop>python sample.py

.

Ran 1 test in 0.000s

OK

The preceding is the result of a successful run of our test.

Testing in Ruby development
Ruby also has its built-in unit testing library called Test::Unit, but most people like
using Behavior-Driven Development (BDD) when using Ruby, and Rails especially.
There are two popular BBD frameworks: RSpec and Cucumber.

Quote from the RSpec.info website:

"RSpec is a testing tool for the Ruby programming language. Born under the
banner of Behavior-Driven Development, it is designed to make Test-Driven
Development a productive and enjoyable experience."

Quote from the Cucumber repository:

"Cucumber is a tool that executes plain-text functional descriptions as
automated tests."

We are lucky that there is a single package for Sublime that supports the three
testing frameworks: Test::Unit, RSpec, and Cucumber. It's called RubyTest and
can be found on https://github.com/maltize/sublime-text-2-ruby-tests.

Testing Using Sublime

[70]

The package is called sublime-text-2-ruby-tests but it supports both
Sublime Text 2 and 3.

Using RubyTest for Sublime
To install the RubyTest package, we'll use Package Control. Let's open the command
palette by pressing Ctrl + Shift + P in Windows or Linux and Command + Shift + P in
OS X. Choose Install Package and then install the RubyTest package. The RubyTest
package doesn't include any snippets but has some useful commands instead. Here
is a list of all the commands and their shortcuts:

RubyTest command Windows/Linux OS X
Run single test Ctrl + Shift + R Command + Shift + R
Run all tests from current file Ctrl + Shift + T Command + Shift + T
Run last test(s) Ctrl + Shift + E Command + Shift + E
Show test panel Ctrl + Shift + X Command + Shift + X
Check RB, ERB Syntax Alt + Shift + V Option + Shift + V

Here is how a testing result should look after being run using RubyTest:

We can see that we received 2 assertions, 1 failure, and 0 errors.

Chapter 6

[71]

Supporting bundler
RubyTest also has a bundler autodetect feature that is based on the presence of
a Gemfile in the project root directory. If this feature is enabled, RubyTest will
automatically scan for the Gemfile and will add a prefix of bundle exec to any
command it runs.

To enable this feature, we'll need to add a line to the RubyTest settings. We'll do it
by going to Preferences | Package Settings | RubyTest | Settings – User and
adding the following code:

{
 "check_for_bundler": true
}

After saving, the bundler autodetect feature is enabled.

Summary
In this chapter, we learned how to test our PHP, Python, and Ruby code using the
best Sublime plugins.

In the next chapter, we will learn how to debug our PHP, JavaScript, and C/C++
code using the best plugins, all without leaving the Sublime environment!

Debugging Using Sublime
This chapter will teach us how to use Sublime Text for debugging our code in
different languages. The following topics will be covered in this chapter:

• Introduction to debugging in Sublime Text
• Debugging PHP with Xdebug
• Debugging JavaScript with Web Inspector
• Debugging C/C++ with GDB

Introduction to debugging in Sublime Text
We'll start with a famous quote by Steve McConnell:

"It's hard enough to find an error in your code when you're looking for it; it's even
harder when you've assumed your code is error-free."

That is why we use debuggers to help us debug our code, find errors, and fix them.
Sublime has some plugins that integrate some debugging features in them. We will
cover debugging PHP using SublimeTextXdebug, debugging JavaScript using
SublimeWebInspector, and debugging C/C++ using SublimeGDB.

"If debugging is the process of removing bugs, then programming must be the
process of putting them in."

 – Edsger W. Dijkstra

Debugging Using Sublime

[74]

Debugging PHP with Xdebug
Xdebug is a PHP extension that provides us with debugging and profiling
capabilities. It includes stack traces, real-time parameters' display, filenames,
and line indicators. Sublime has a great plugin to help us debug our PHP code
while using Xdebug. Having Xdebug installed is mandatory for this section;
for more information, please visit: http://xdebug.org/docs/install.

Using Xdebug for Sublime
There are two Xdebug plugins for Sublime. We will install the Xdebug Client.
To install the SublimeTextXdebug package, we'll use Package Control. Open the
command palette by pressing Ctrl + Shift + P in Windows or Linux, and Command +
Shift + P in OS X. Then choose Install Package and install the Xdebug Client package.

After installing, we'll need to change the xdebug.ini configuration file:

[xdebug]
zend_extension = "/absolute/path/to/our/xdebug-extension.so"
;zend_extension = "C:\Program Files (x86)\PHP\ext\php_xdebug.dll"
Xdebug.remote_enable = 1
Xdebug.remote_host = "127.0.0.1"
Xdebug.remote_port = 9000
Xdebug.remote_handler = "dbgp"
Xdebug.remote_mode = req
Xdebug.remote_connect_back = 1

If we are using a Linux/OS X platform, we should keep the Windows path
commented and give an absolute path to our xdebug-extension.so file. If we
are using Windows, we should comment the first line by adding a semicolon,
uncomment the second one by removing the semicolon, and change the path to
where our php_xdebug.dll file is located. We should restart the server after this.

The following screenshot is that of a debugging session:

Chapter 7

[75]

As we can see in the preceding screenshot, all available Xdebug commands are being
shown on the command palette, and we have three new windows at the bottom:

• Xdebug Context: This window shows all variables in the current context
• Xdebug Stack: This window shows the current call stack
• Xdebug Breakpoint: This window shows all breakpoints that have been set

The following are all the commands that we will need to have for a good
debugging session:

SublimeXdebug command Windows/Linux OS X
Start debugging Ctrl + Shift + F9 Command + Shift + F9
Stop debugging Ctrl + Shift + F10 Command + Shift + F10
Add/remove breakpoint Ctrl + F8 Command + F8
Set conditional breakpoint Shift + F8 Shift + F8
Run Ctrl + Shift + F5 Command + Shift + F5
Step over Ctrl + Shift + F6 Command + Shift + F6
Step into Ctrl + Shift + F7 Command + Shift + F7
Step out Ctrl + Shift + F8 Command + Shift + F8

Debugging Using Sublime

[76]

All commands can also be found in the command palette by pressing Ctrl + Shift +
P in Windows or Linux, and Command + Shift + P in OS X, or typing Xdebug: in the
Sublime Text menu under Tools | Xdebug.

If you are facing any trouble, try visiting the Troubleshoot
page at: https://github.com/martomo/
SublimeTextXdebug#troubleshoot.

Debugging JavaScript with Web Inspector
There are tons of web developers among us, and we all find our own ways of
debugging our JavaScript code. Sublime has a wonderful plugin to make it easy
for us. It is called Sublime Web Inspector (SWI). It lets us set breakpoints, examine
the console, evaluate selections, debug step-by-step, and more! This plugin requires
Google Chrome to be installed.

Installing Sublime Web Inspector
At the time this was written, the Package Control didn't include a Sublime Text 3
version of SWI. So, we'll need to install it manually by cloning the ST3 branch on the
SWI repository on GitHub. Let's start by opening our packages directory from the
Sublime Text menu by navigating to Preferences | Browse Packages…. This will
open up the packages directory. We'll need to navigate to this directory from the
console; in Windows, we can do it simply by Shift + right-click | Open command
window here, while on Linux and OS X, we'll need to use cd to navigate manually
from the terminal. After we are in the packages directory, we need to clone the right
branch by executing the following:

git clone -b ST3 "git://github.com/sokolovstas/SublimeWebInspector.git"

To test out the installation, we'll open the command palette and go to
Web Inspector | Start Google Chrome with remote debug port 9222; this should
open up Chrome. If we get an error message saying The system cannot find the file
specified, we'll need to change the path for our chrome installation. We'll do it by
going to the cloned directory and edit swi.sublime-settings to fit our needs:

Chapter 7

[77]

// Path to google chrome
 "chrome_path": {
 "osx": "/Applications/Google Chrome.app/Contents/MacOS/Google
Chrome",
 "windows": "C:\\Users\\Danpe\\AppData\\Local\\Google\\Chrome\\
Application\\chrome.exe",
 "windows_x64": "C:\\Users\\Danpe\\AppData\\Local\\Google\\
Chrome\\Application\\chrome.exe",
 "linux": "/usr/bin/google-chrome"
 },

Make sure that all Chrome windows are closed before opening with the debug port
and the path settings are correct. Chrome won't open in the debug mode if another
Chrome window is already open.

Using Sublime Web Inspector (SWI)
After opening Chrome in the debug mode, we will call the Web Inspector again by
pressing Ctrl + Shift + R on Windows or Linux, and Command + Shift + R on OS X.
We should see the Start debugging and Add/Remove Breakpoint commands,
as shown in the following screenshot:

Debugging Using Sublime

[78]

Clicking on Start debugging will give us a list of all currently open tabs in Chrome.
We'll choose the one that we wish to debug. We will see a screen similar to the
following screenshot:

We can see all our debug prints as well as warnings and errors inside the console.
While making a change and saving, the page will get auto refreshed. Let's try it by
changing a to b where b isn't a real variable, and see what happens:

Oops! We got an error. We can see where the breakpoint stopped (Resume, Step
Over, Step Into, and Step Out). We can also add our own breakpoint by calling
the Web Inspector and clicking on Add/Remove Breakpoint. SWI exposes its
commands so we can bind any keys to those commands. The following is a list
of all the exposed commands:

Chapter 7

[79]

Description Command
Start debugger swi_debug_start

Stop debugger swi_debug_stop

Start Google Chrome swi_debug_start_chrome

Show mapping of a local file to a URL swi_show_file_mapping

Add/remove breakpoints swi_debug_breakpoint

Resume from pause swi_debug_resume

Step Into debugger swi_debugger_step_into

Step Out debugger swi_debugger_step_out

Step Over debugger swi_debug_step_over

Evaluate selection swi_debug_evaluate

Reload debugged page swi_debug_reload

Debugging C/C++ with GDB
The GNU Project Debugger (GDB) is a debugger built by the open source GNU
Project, and it lets us debug the following languages:

• Ada
• C
• C++
• D
• Fortran
• Go
• Modula-2
• Objective-C
• OpenCL C
• Pascal

GDB comes with most of the Unix distributions that include Linux and OS X. In
the latest OS X named Maverick, GDB isn't installed by default and can be installed
using brew. For Windows, we will have to download and install Minimalist GNU
for Windows (MinGW) from http://sourceforge.net/projects/mingw/files/.
This will let us compile C code and use GDB to debug it. Sublime has an awesome
plugin called SublimeGDB, which is used for debugging with GDB, and is written
by Fredrik Ehnbom (@quarnster).

Debugging Using Sublime

[80]

Using SublimeGDB
We'll start by installing Sublime GDB using the Package Control. Let's open the
command palette by pressing Ctrl + Shift + P in Windows or Linux, and Command +
Shift + P in OS X. Then choose Install Package and install the SublimeGDB package.
After installing, we'll need to configure SublimeGDB to make it work. Let's create a
new Hello World C file, hello.c:

#include <stdio.h>

int main(void)
{
 printf("Hello World!\n");
 return 0;
}

Make sure this is the only file in our current project, and save the project by going to
Project | Save Project As... in the Sublime menu. After the project has been saved,
let's edit it by going to Project | Edit Project. A new empty JSON project file will be
opened. We'll need to add the following to make SublimeGDB work:

{
 "folders":
 [
 {
 "path": "C:\\Users\\Danpe\\Desktop\\src",
 },
],
 "settings":
 {
 "sublimegdb_workingdir": "${folder:${project_path:hello.
exe}}",
 // NOTE: You MUST provide --interpreter=mi for the plugin to
work
 "sublimegdb_commandline": "gdb --interpreter=mi C:\\Users\\
Danpe\\Desktop\\src\\hello.exe"
 }
}

This JSON sets our project's folders and settings for SublimeGDB to work. Before
trying out GDB, let's compile our C code first by executing the following code:

gcc –g hello.c –o hello.exe

Chapter 7

[81]

This will compile our C code in the debug mode, and the output file will be named
hello.exe. After compiling, we can open the code and start setting breakpoints by
going to the desired line and pressing F9.

An OS X user might want to bind this to a different key or disable the
Expose and Spaces key bindings in the OS X System Preferences.

After toggling a breakpoint, we'll press F5 to run our executable using SublimeGDB:

In the preceding screenshot, we can see our breakpoint on line 5. After pressing
F11 to Step Into, we are currently on line 6. At the bottom, we can see the current
variables, callstack, threads, and more.

The following table shows a quick summary of all the required shortcuts for
debugging with SublimeGDB:

SublimeGDB command Windows/Linux OS X
Launch F5 F5
Exit Ctrl + F5 Control + F5
Add/remove Breakpoint F9 F9
Step Over F10 F10
Step Into F11 F11
Step Out Shift + F11 Shift + F11
Continue F5 F5

Debugging Using Sublime

[82]

Summary
By the end of this chapter, we know how to debug our PHP, JavaScript, and C/C++
code using the best debugging plugins that Sublime's community offers.

We have some homework before the next chapter. We need to think on what's
missing in our Sublime Environment. Is there a feature that we are missing? Can
we make our coding more productive by adding functionalities to Sublime? After
answering one of these questions, we can start the next chapter that will guide us
through developing our own plugin for Sublime Text 3!

Developing Your Own Plugin
This chapter takes you step-by-step through the process of developing a plugin for
Sublime Text and publishing it to the community. In this chapter we will cover the
following topics:

• Warming up before starting a plugin
• Starting a plugin
• Developing the plugin
• Publishing our plugin

Warming up before starting a plugin
We have seen that plugins can be very helpful in many situations, so it's time for us
to develop our own! Before starting, we need to know a few things; the first is an
idea for a plugin. In our case, we will develop a Ruby on Rails plugin that will help
us identify relationships between ActiveRecord models. ActiveRecord models can
define relationships with other ActiveRecord models that are defined across different
files, creating a plugin that will automatically open all the related files. This plugin
can be very helpful for a Rails developer.

It is also important to have the Sublime Text API open simultaneously. It can be
found at http://www.sublimetext.com/docs/3/api_reference.html. Lets not
forget a name for our plugin! In our case, we will call the plugin RelationsFinder.
The Default Packages folder is full of useful open source plugins with code
snippets and examples.

Developing Your Own Plugin

[84]

Starting a plugin
Sublime can generate a plugin template for us. To generate a plugin, navigate to
Tools | New Plugin…. Then we should see a screen similar to that shown in the
following screenshot:

The previous screenshot is what a "Hello, World!" plugin looks like. Before starting
to write our own code, let's test the following code by saving the file by pressing
Ctrl + S on Windows or Linux and Command + S on OS X. The Save dialog will open
in the Packages/User folder. We don't have to save the file there. We will browse
one folder up and create a new folder named RelationsFinder. Now let's save the
file as RelationsFinder.py. The filename doesn't really matter, but the convention
is that the file name should be the same as the plugin name. After we've saved the
plugin, let's try running it. To run the file, we'll need to open the console by pressing
Ctrl + ` on Windows or Linux and Control + ` on OS X. Enter the following line in the
console to test your new plugin:

view.run_command('example')

Pressing Enter will insert Hello World! where the cursor is positioned in our currently
open file. Let's try it again, but this time, we'll change the command name from
ExampleCommand to RelationsFinderCommand, as shown in the following screenshot:

Chapter 8

[85]

As you can see in the preceding screenshot, 'relations_finder' will run
RelationsFinderCommand. This is Sublime's naming convention for commands.
Sublime also provides three different types of commands:

• Text Command: This command provides us access to the content of the
current file/text via a View object.

• Window Command: This command provides us access to the current
window via a Window object

• Application Command: This command does not provide access to any
specific window/file and is not used commonly. However, this code will run
when the application starts.

Since we will be opening views with this plugin, we will use the sublime_plugin.
WindowCommand class as the base of our command. To do that, we will change our
class definition to the following:

class RelationsFinderCommand(sublime_plugin.WindowCommand):

Developing Your Own Plugin

[86]

Then remove the edit parameter from our run function:

def run(self):
 pass

Now we want our plugin command to show up in the command palette. Let's create
a new file named RelationsFinder.sublime-commands and save it in the same
folder with the following content:

[
 {
 "caption": "RelationsFinder: Find Relations",
 "command": "relations_finder"
 }
]

This file will determine which commands we want to expose to the command
palette. We will expose our relations_finder command by choosing the option
RelationsFinder: Find Relations. We can now open the command palette by
pressing Ctrl + Shift + P in Windows or Linux and Command + Shift + P in OS X
and look for the RelationsFinder: Find Relations command, as shown in the
following screenshot:

Clicking on the RelationsFinder: Find Relations command will execute our run
command, which currently does nothing.

Chapter 8

[87]

Developing the plugin
Now that we have a plugin with a basic command that shows up in the command
palette, we can start developing our plugin; we'll start with hiding the command
when it's unusable. We'll do it by overriding the is_visible function and checking
that the current file extension is .rb and the first line contains a ActiveRecord::Base
inheritance. Let's import the python os lib by adding import os below the import
sublime line. Add the following to our command:

def is_visible(self):
 view = self.window.active_view()
 file_name, file_extension = os.path.splitext(view.file_name())
 return file_extension == ".rb" and "ActiveRecord::Base" in view.
substr(view.line(0))

When the command palette is being opened, it will run all the is_visible functions
of all the exposed commands to check whether or not they should be shown. We are
checking whether or not the current view (file) extension is set as .rb and the first
line of the file contains ActiveRecord::Base and only if both conditions are true,
will this command be visible.

Now we want to scan our file for all the relations. We will use the find_all function
of view that retrieves a pattern and returns an array of Regions containing the found
pattern. A Region consists of two indexes—a start index and an end index—that
together define a string:

view = self.window.active_view()
regions = view.find_all("(belongs_to|has_many) :\w+")

We will now need to extract the actual string from these regions. We will do it with
the substr function of view:

for region in regions:
 line = view.substr(region)

We might have a problem when a relationship with the user model is written as
has_many :users and the filename is user.rb by Rails convention. We will need to
clean this string and have a user.rb string:

if line.endswith('s'):
 line = line[:-1]
model = line[line.index(":") + 1:] + ".rb"

Developing Your Own Plugin

[88]

First s is removed and then we cut everything that is after :, adding .rb at the end.
The model variable should now hold user.rb. Now, we just need to look for that file
in the current project and open it. We will use Python's os.walk to open the file:

def open_file_in_project(self, file):
 root = self.window.folders()[0]
 for root, subFolders, files in os.walk(root):
 if file in files:
 self.window.open_file(os.path.join(root, file))

The preceding function will scan all folders until it finds the required file and open it
using the open_file command of the Window class. The following is the final code:

import sublime, sublime_plugin
import os

class RelationsFinderCommand(sublime_plugin.WindowCommand):
 def is_visible(self):
 view = self.window.active_view()
 file-name, file_extension = os.path.splitext(view.file_name())
 return file_extension == ".rb" and "ActiveRecord::Base" in view.
substr(view.line(0))

 def run(self):
 view = self.window.active_view()
 regions = view.find_all("(belongs_to|has_many) :\w+")
 for region in regions:
 line = view.substr(region)
 if line.endswith('s'):
 line = line[:-1]
 model = line[line.index(":") + 1:] + ".rb"
 self.open_file_in_project(model)

 def open_file_in_project(self, file):
 root = self.window.folders()[0]
 for root, subFolders, files in os.walk(root):
 if file in files:
 self.window.open_file(os.path.join(root, file))

We have covered every line so far; now it's time to test the plugin! Open the
model in a Ruby on Rails project and call our plugin using the command palette.
All relationships instantly open!

This plugin can be enhanced in a lot of ways, for example, by
adding key bindings and supporting has_many_through and
:class_name; feel free to improve it.

Chapter 8

[89]

Publishing our plugin
We are going to publish our plugin to Package Control, so everyone can download
and install it. To publish our plugin, we'll need to have git installed on our system
and a GitHub account. Let's first start by creating a repository for our plugin and
committing all files to it by running the following commands in the plugin folder:

git init

git add .

git commit –m "Initial Commit"

Create a new public repository in GitHub by going to http://github.com/new and
pushing our local repository there by running:

git remote add origin https://github.com/USERNAME/REPO-NAME.git

git push -u origin master

In the preceding code, USERNAME is your username and REPO-NAME is the repository
name you just created. GitHub will prompt you for the username and password.

You can also add a README.md file to your repository.

Now for the tricky part: we'll need to select Fork on the https://github.com/
wbond/package_control_channel page, as shown in the following screenshot:

After forking, we'll need to find the right file for adding our plugin to. package_
control_channel/blob/master/repository/X.json, where X is the first letter of
our plugin name. We'll edit this file and add the following code:

{
 "name": "RelationsFinder",
 "details": "https://github.com/USERNAME/REPO-NAME",
 "releases": [
 {
 "sublime_text": "*",
 "details": "https://github.com/USERNAME/REPO-NAME/tree/master"
 }
]
}

Developing Your Own Plugin

[90]

Once you're done with editing, click on Commit Changes at the bottom of the page:

Now, let's create a pull request for our changes by going back to our forked repository
page and clicking on the pull request button, as shown in the following screenshot:

Now all we have left to do is wait for an approval.

For complete instructions please visit https://sublime.wbond.
net/docs/developers

Summary
By the end of this chapter, we have developed a simple plugin and published it for
the public so that everyone can install it using Package Control!

It is important to know that plugins can have a lot more complicated features and
that the Sublime API reference is full of useful functions that help us develop
awesome plugins.

That's it; you are now Master of Sublime Text! We would love to see your plugins
on the Web.

Index
A
ActiveRecord models 83
advanced key bindings 47
Application Command 85
Approximate string matching 16

B
background mode, SublimeLinter 31
bindable keys 47
BoundKeys 47, 48

C
C/C++ linter 31
CoffeeScript linter 31
Column Selection 26
content tag, snippets 37
CSS linter 31

D
Data directory

about 12
installed packages 12
local 12
location 12
packages 12

debugging, in Sublime Text
C/C++, debugging with GDB 79
JavaScript, debugging with Web

Inspector 76
PHP, debugging with Xdebug 74

description tag, snippets 37

E
editing commands, Vintage Mode 61

F
field markers, snippet

about 38
mirrored field markers 38
placeholders 38

Fuzzy Text Search 16

G
GNU Project Debugger (GDB)

about 79
used, for debugging C/C++ 79

Go To Anything feature 26

H
Haml linter 31
HTML linter 31

I
incremental search, Search and

Replace feature 24

J
Java linter 31
JavaScript

debugging, with Web Inspector 76
JavaScript linter 31
JUnit 66

[92]

K
key bindings

about 42
advanced key bindings 47
key map file structure 46
maintaining 45
managing 48
overriding 45
platform-specific key bindings 46

key map
about 46
bindable keys 47
elements 46
file structure 46

L
linters

C/C++ 31
CoffeeScript 31
CSS 31
Haml 31
HTML 31
Java 31
JavaScript 31
Lua 31
Objective-J 31
Perl 31
PHP 31
Puppet 31
Python 31
Ruby 31
XML 31

linting 31
load-save mode, SublimeLinter 31
Lua linter 31

M
macros

about 41
editing 42
playing 42
recording 41
saved macro, binding 42
saving 42

Minimalist GNU for Windows (MinGW) 79
Mini Map 14
movement commands, Vintage Mode 60
Multiple Selections 25

O
Objective-J linter 31
on demand mode, SublimeLinter 32

P
Package Control

installing 18, 19
Package Control snippets

using 41
Packages directory

about 12
user package 13

Perl linter 31
PHP linter 31
PHPUnit

about 64
snippets 66
using 64-66

plugin development
about 83
plugin, developing 87, 88
plugin, publishing 89, 90
plugin, starting 84-86

projects
about 27
build systems 29
folders 28
settings 28
switching 29

Puppet linter 31
Python linter 31
PyUnit 66

R
Regular Expressions 22
RelationsFinder 83
Ruby on Rails plugin 83
RubyTest

about 69
bundler autodetect 71

[93]

bundler autodetect, enabling 71
installing 70
using 70

Ruyb linter 31

S
save-only mode, SublimeLinter 32
scope tag, snippets 37
Search and Replace feature

discovering 21
incremental search 24
multiple files 25
Regular Expressions 22
search panel options 22
single file 22-24

settings, Sublime Text
customization 50
packages, adding 50
settings file types 49
SideBarEnhancements package 50
spaces 50
tabs 50
TrailingSpaces package 50

SFTP 18
shortcuts map, Sublime Text

bookmarks 33
editing text/code shortcuts 33
general shortcuts 32
tabs shortcuts 33

SideBarEnhancements package 50
snippet

about 35-37
creating 39, 40
environment variables 38
example 36
features 38
field markers 38
file format 37
syntax 37
working 37

Split Windows feature 53
ST3 branch 76
subl 6

SublimeCodeIntel
about 29
configuring 30
features 29
using 30

SublimeGDB
installing 80
using 80

SublimeLinter
about 31
background mode 31
configuring 32
installing 31
linters 31
linting with 31
load-save mode 31
on demand mode 32
save-only mode 32
using 31

Sublimemerge 18
sublime_plugin.WindowCommand class 85
Sublime, running

command palette 16, 17
projectfolder command used 14
Python console 17, 18
simple navigation 15, 16

Sublime Text
about 5
base settings 49
code editing 21
debugging 73
installing, on Linux 9
installing, on OS X 6
installing, on other Linux

distributions 10, 11
installing, on Ubuntu 32/64 bit 9, 10
installing, on Windows 32/64 bit 7
Package Control plugin, installing 18
plugin, developing 83
shortcuts map 32
Split Windows feature 53-55
testing 63
URL 6
visual settings 51

sublime-text-2-ruby-tests 70

[94]

Sublime Text installation, on Linux
about 9
desktop file, adding 11
Sublime Text, setting as default editor 10

Sublime Text installation, on OS X
about 6
Sublime CLI, working with 6, 7

Sublime Text installation, on Windows
32/64 bit

about 7
Sublime, adding to environment 8, 9

SublimeTextXdebug package
installing 74

sublime-unittest 66
Sublime Web Inspector (SWI)

about 76
installing 76, 77
using 77, 78

symbol search 27

T
tabTrigger tag, snippets 37
testing, in PHP development

about 64
PHPUnit, using 64-66

testing, in Python development
about 66
unittest, using 67-69

testing, in Ruby development
about 69
RubyTest, using 70

testing, Sublime Text
about 63
in PHP development 64
in Python development 66
in Ruby development 69

Text Command 85
TextMate 25
TrailingSpaces package 50

U
unittest 66, 67

V
vi

about 57
discovering 57

vi commands 59
vim (vi improved) 57
Vintage Mode

about 57
commands 59
commands, for changing modes 60
editing commands 61
editing modes 59
features 59
movement commands 60
setting up 58
vi, discovering 57

Vintageous 61
visual setings, Sublime Text

about 51
color schemes 52, 53
Sublime themes 52

W
Web Inspector

used, for debugging JavaScript 76, 77
Window Command 85

X
Xdebug

about 74
URL 74
used, for debugging PHP 74
using, for Sublime 74-76

Xdebug commands
listing 75, 76

XML linter 31

Thank you for buying
Mastering Sublime Text

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Sublime Text Starter
[Instant]
ISBN: 978-1-84969-392-9 Paperback: 46 pages

Learn to efficiently author software, blog posts, or
any other text with Sublime Text 2

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2. Reduce redundant typing with contextual
auto-complete

3. Get a visual overview of, and move around in,
your document with the preview pane

Learning Play! Framework 2
ISBN: 978-1-78216-012-0 Paperback: 290 pages

Start developing awesome web applications with this
friendly, practical guide to the Play! Framework

1. While driving in Java, tasks are also presented
in Scala – a great way to be introduced to this
amazing language

2. Create a fully-fledged, collaborative web
application – starting from ground zero;
all layers are presented in a pragmatic way

3. Gain the advantages associated with
developing a fully integrated web framework

Please check www.PacktPub.com for information on our titles

Python 2.6 Text Processing:
Beginner's Guide
ISBN: 978-1-84951-212-1 Paperback: 380 pages

The easiest way to learn how to manipulate text
with Python

1. The easiest way to learn text processing
with Python

2. Deals with the most important textual data
formats you will encounter

3. Learn to use the most popular text processing
libraries available for Python

4. Packed with examples to guide you through

Mastering TypoScript: TYPO3
Website, Template, and Extension
Development
ISBN: 978-1-90481-197-8 Paperback: 400 pages

A complete guide to understanding and using
TypoScript, TYPO3's powerful configuration language

1. Powerful control and customization using
TypoScript

2. Covers templates, extensions, admin, interface,
menus, and database control

3. You don't need to be an experienced PHP
developer to use the power of TypoScript

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Sublime Text
	Preparing for Sublime Text Installation
	Installing Sublime Text on OS X
	Working with Sublime CLI

	Installing Sublime Text on Windows
32/64 bit
	Adding Sublime to the environment

	Installing Sublime Text on Linux
	Installing Sublime Text on Ubuntu 32/64 bit
	Reduce size, this is a subheading of the Ubuntu 32/64 section
	Installing Sublime Text on other Linux distributions
	Adding a desktop file

	Getting to know the Data and Packages directories
	The Data directory
	The Packages directory

	Delving into packages, plugins, snippets,
and macros

	Running Sublime for the first time
	Simple navigation
	Sublime's command palette
	The Python console

	Installing the Package Control ASAP
	Summary

	Chapter 2: Code Editing
	Discovering Search and Replace
	Regular Expressions
	Search and Replace – single file
	The incremental search

	Search and Replace – multiple files

	Mastering Column and Multiple Selection
	Column Selection

	Navigating through everything
	Going To Anything
	Symbol search
	Projects
	Folders
	Settings
	Build systems
	Navigating between projects

	Using the must-have SublimeCodeIntel
	Installing SublimeCodeIntel
	Using SublimeCodeIntel
	Configuring SublimeCodeIntel

	Linting with SublimeLinter
	Installing SublimeLinter
	Using SublimeLinter
	Configuring SublimeLinter

	Must-know shortcuts map
	General
	Tabs
	Bookmarks
	Editing

	Summary

	Chapter 3: Snippets, Macros, and Key Bindings
	Getting to know a snippet
	Understanding your first snippet
	How do snippets work?
	File format and syntax
	Knowing about snippets features

	Creating our first snippet

	Using Package Control snippets
	Recording, editing, and using macros
	Recording a macro
	Playing a macro
	Saving and editing
	Binding a saved macro

	New key bindings
	Summary

	Chapter 4: Customization and Theme Development
	Overriding and maintaining key bindings
	Platform-specific key bindings
	Key map file structure
	Bindable keys
	Advanced key bindings

	Keeping our key bindings organized

	Understanding Sublime's base settings
	Types of settings files
	Customization walkthrough
	Adding packages
	Tabs and spaces

	Beautifying Sublime with colors and themes
	Visual settings
	Sublime themes
	Color schemes

	Mastering Split Windows
	Summary

	Chapter 5: Unravelling Vintage Mode
	Understanding Vintage Mode
	Discovering vi

	Setting up Vintage Mode
	Experiencing Vintage Mode features
	Vintage editing modes
	Vintage Mode commands
	Commands for changing modes
	Movement commands
	Editing commands

	Knowing about Vintageous
	Summary

	Chapter 6: Testing using Sublime
	Introduction to testing in Sublime Text
	Testing in PHP development
	Knowing about PHPUnit
	Using PHPUnit plugin for Sublime
	Helpful PHPUnit snippets

	Testing in Python development
	Using unittest for Sublime

	Testing in Ruby development
	Using RubyTest for Sublime
	Supporting bundler

	Summary

	Chapter 7: Debugging Using Sublime
	Introduction to debugging in Sublime Text
	Debugging PHP with Xdebug
	Using Xdebug for Sublime

	Debugging JavaScript with Web Inspector
	Installing Sublime Web Inspector
	Using Sublime Web Inspector (SWI)

	Debugging C/C++ with GDB
	Using SublimeGDB

	Summary

	Chapter 8: Developing Your Own Plugin
	Warming up before starting a plugin
	Starting a plugin
	Developing the plugin
	Publishing our plugin
	Summary

	Index

